How Do You Simplify the Limit of f(x)=√x at x=7?

  • Thread starter Thread starter 3.141592654
  • Start date Start date
  • Tags Tags
    Limit
3.141592654
Messages
85
Reaction score
0

Homework Statement



Use this limit for the following problems: lim as h approaches 0 of [f(x+h)-f(x)]/h.

f(x)=\sqrt{x}, x=7


Homework Equations





The Attempt at a Solution



lim as h approaches 0 of [f(x+h)-f(x)]/h

= lim as h approaches 0 of (\sqrt{7+h}-\sqrt{7})/h

I'm having trouble simplifying the numerator, is there any way to get rid of the square roots in the numerator? Thank you.
 
Physics news on Phys.org
Rationalize the numerator

\frac{ (\sqrt{7+h} - \sqrt{7})( \sqrt{7+h} + \sqrt{7})}{h( \sqrt{7+h} + \sqrt{7}}
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top