PiRho31416
- 18
- 0
[Solved] Laplace Transform
\frac{d^{2}y}{dt^{2}}+4y=sin(t),\quad y(0)=0,\quad\frac{dy}{dt}(0)=0
Laplace transform is defined as:
\mathcal{L}\{f(t)\} = \int_{-\infty}^{\infty}f(t)e^{st}dt
<br /> \frac{d^{2}y}{dt^{2}}+4y=sin(t),\quad y(0)=0,\quad\frac{dy}{dt}(0)=0
s^{2}\mathcal{L}\{y\}-sy'(0)-y(0)-4\mathcal{L}\{y\}=\frac{1}{s^{2}+1}
\mathcal{L}\{y\}(s^{2}-4)=\frac{1}{s^{2}+1}
\Rightarrow \frac{1}{s^{2}+1}\cdot \frac{1}{s^{2}-4}=\frac{As+B}{s^2+1}\cdot\frac{Cs+D}{s^2-4}
1 = (As+B)(s^2-4)\cdot(Cs+D)(s^2+1)
1 = As^3-4As+Bs^2-4B+Cs^3+Cs+Ds^2+D
1 = s^3(A+C)+s^2(B+D)+s(C-4A)+D-4B
\begin{bmatrix}<br /> 1 & 0 & 1 & 0\\ <br /> 0 & 1 & 0 & 1\\ <br /> -4 & 0 & 1 & 0\\ <br /> 0 & -4 &0 & 1<br /> \end{bmatrix}<br /> \begin{bmatrix}<br /> A\\ <br /> B\\ <br /> C\\ <br /> D<br /> \end{bmatrix}<br /> =\begin{bmatrix}<br /> 0\\ <br /> 0\\ <br /> 1\\ <br /> 0<br /> \end{bmatrix}<br /> \\\<br /> \begin{bmatrix}<br /> A\\ <br /> B\\ <br /> C\\ <br /> D<br /> \end{bmatrix} =<br /> \begin{bmatrix}<br /> -1/5 \\<br /> 0 \\<br /> 1/5 \\<br /> 0<br /> \end{bmatrix}
\mathcal{L}\{Y\}=\frac{1}{5}\frac{1}{s^2-1}-\frac{1}{5}\frac{1}{s^2+1}
\mathcal{L}\{Y\}=\frac{1}{5}\frac{1}{s^2-1}-\frac{1}{5}\frac{1}{s^2+1}
\Rightarrow\mathcal{L}\{\frac{1}{5}\frac{1}{s^2+1}\}=\frac{1}{5}sin(t)
\Rightarrow\mathcal{L}\{\frac{-1}{5}\frac{1}{s^2-1}\}=\mathcal{L}\{\frac{-1}{5}\frac{1}{(s+1)(s-1)}\}
So this is where I get stuck using convolution. Since we know
\Rightarrow \mathcal{L}^{-1}\{\frac{1}{s+1}\} = e^{-t}
\Rightarrow \mathcal{L}^{-1}\{\frac{1}{s-1}\} = e^{t}
f(t)=e^{t}
g(t)=e^{t}
f(t) \ast g(t) = \int_{0}^{t}f(\tau)g(\tau-t)\,\,d\tau
\frac{1}{5}\int_{0}^{t}e^{-\tau}e^{\tau-t}\,\,d\tau<br /> = \frac{1}{5}\int_{0}^{t}e^{-\tau+\tau-t},\,\,d\tau<br /> = \frac{1}{5}\int_{0}^{t}e^{-t}\,\,d\tau \\<br /> =\frac{1}{5}\tau e^{-t} \bigg|_{\tau=0}^{\tau=t} = \frac{1}{5}te^{-t}<br />
Homework Statement
\frac{d^{2}y}{dt^{2}}+4y=sin(t),\quad y(0)=0,\quad\frac{dy}{dt}(0)=0
Homework Equations
Laplace transform is defined as:
\mathcal{L}\{f(t)\} = \int_{-\infty}^{\infty}f(t)e^{st}dt
The Attempt at a Solution
<br /> \frac{d^{2}y}{dt^{2}}+4y=sin(t),\quad y(0)=0,\quad\frac{dy}{dt}(0)=0
s^{2}\mathcal{L}\{y\}-sy'(0)-y(0)-4\mathcal{L}\{y\}=\frac{1}{s^{2}+1}
\mathcal{L}\{y\}(s^{2}-4)=\frac{1}{s^{2}+1}
\Rightarrow \frac{1}{s^{2}+1}\cdot \frac{1}{s^{2}-4}=\frac{As+B}{s^2+1}\cdot\frac{Cs+D}{s^2-4}
1 = (As+B)(s^2-4)\cdot(Cs+D)(s^2+1)
1 = As^3-4As+Bs^2-4B+Cs^3+Cs+Ds^2+D
1 = s^3(A+C)+s^2(B+D)+s(C-4A)+D-4B
\begin{bmatrix}<br /> 1 & 0 & 1 & 0\\ <br /> 0 & 1 & 0 & 1\\ <br /> -4 & 0 & 1 & 0\\ <br /> 0 & -4 &0 & 1<br /> \end{bmatrix}<br /> \begin{bmatrix}<br /> A\\ <br /> B\\ <br /> C\\ <br /> D<br /> \end{bmatrix}<br /> =\begin{bmatrix}<br /> 0\\ <br /> 0\\ <br /> 1\\ <br /> 0<br /> \end{bmatrix}<br /> \\\<br /> \begin{bmatrix}<br /> A\\ <br /> B\\ <br /> C\\ <br /> D<br /> \end{bmatrix} =<br /> \begin{bmatrix}<br /> -1/5 \\<br /> 0 \\<br /> 1/5 \\<br /> 0<br /> \end{bmatrix}
\mathcal{L}\{Y\}=\frac{1}{5}\frac{1}{s^2-1}-\frac{1}{5}\frac{1}{s^2+1}
\mathcal{L}\{Y\}=\frac{1}{5}\frac{1}{s^2-1}-\frac{1}{5}\frac{1}{s^2+1}
\Rightarrow\mathcal{L}\{\frac{1}{5}\frac{1}{s^2+1}\}=\frac{1}{5}sin(t)
\Rightarrow\mathcal{L}\{\frac{-1}{5}\frac{1}{s^2-1}\}=\mathcal{L}\{\frac{-1}{5}\frac{1}{(s+1)(s-1)}\}
So this is where I get stuck using convolution. Since we know
\Rightarrow \mathcal{L}^{-1}\{\frac{1}{s+1}\} = e^{-t}
\Rightarrow \mathcal{L}^{-1}\{\frac{1}{s-1}\} = e^{t}
f(t)=e^{t}
g(t)=e^{t}
f(t) \ast g(t) = \int_{0}^{t}f(\tau)g(\tau-t)\,\,d\tau
\frac{1}{5}\int_{0}^{t}e^{-\tau}e^{\tau-t}\,\,d\tau<br /> = \frac{1}{5}\int_{0}^{t}e^{-\tau+\tau-t},\,\,d\tau<br /> = \frac{1}{5}\int_{0}^{t}e^{-t}\,\,d\tau \\<br /> =\frac{1}{5}\tau e^{-t} \bigg|_{\tau=0}^{\tau=t} = \frac{1}{5}te^{-t}<br />
Last edited: