How Do You Solve a Second Order Differential Equation Using Laplace Transforms?

PiRho31416
Messages
18
Reaction score
0
[Solved] Laplace Transform

Homework Statement


\frac{d^{2}y}{dt^{2}}+4y=sin(t),\quad y(0)=0,\quad\frac{dy}{dt}(0)=0



Homework Equations


Laplace transform is defined as:
\mathcal{L}\{f(t)\} = \int_{-\infty}^{\infty}f(t)e^{st}dt


The Attempt at a Solution


<br /> \frac{d^{2}y}{dt^{2}}+4y=sin(t),\quad y(0)=0,\quad\frac{dy}{dt}(0)=0
s^{2}\mathcal{L}\{y\}-sy&#039;(0)-y(0)-4\mathcal{L}\{y\}=\frac{1}{s^{2}+1}
\mathcal{L}\{y\}(s^{2}-4)=\frac{1}{s^{2}+1}
\Rightarrow \frac{1}{s^{2}+1}\cdot \frac{1}{s^{2}-4}=\frac{As+B}{s^2+1}\cdot\frac{Cs+D}{s^2-4}
1 = (As+B)(s^2-4)\cdot(Cs+D)(s^2+1)
1 = As^3-4As+Bs^2-4B+Cs^3+Cs+Ds^2+D
1 = s^3(A+C)+s^2(B+D)+s(C-4A)+D-4B
\begin{bmatrix}<br /> 1 &amp; 0 &amp; 1 &amp; 0\\ <br /> 0 &amp; 1 &amp; 0 &amp; 1\\ <br /> -4 &amp; 0 &amp; 1 &amp; 0\\ <br /> 0 &amp; -4 &amp;0 &amp; 1<br /> \end{bmatrix}<br /> \begin{bmatrix}<br /> A\\ <br /> B\\ <br /> C\\ <br /> D<br /> \end{bmatrix}<br /> =\begin{bmatrix}<br /> 0\\ <br /> 0\\ <br /> 1\\ <br /> 0<br /> \end{bmatrix}<br /> \\\<br /> \begin{bmatrix}<br /> A\\ <br /> B\\ <br /> C\\ <br /> D<br /> \end{bmatrix} =<br /> \begin{bmatrix}<br /> -1/5 \\<br /> 0 \\<br /> 1/5 \\<br /> 0<br /> \end{bmatrix}


\mathcal{L}\{Y\}=\frac{1}{5}\frac{1}{s^2-1}-\frac{1}{5}\frac{1}{s^2+1}
\mathcal{L}\{Y\}=\frac{1}{5}\frac{1}{s^2-1}-\frac{1}{5}\frac{1}{s^2+1}
\Rightarrow\mathcal{L}\{\frac{1}{5}\frac{1}{s^2+1}\}=\frac{1}{5}sin(t)
\Rightarrow\mathcal{L}\{\frac{-1}{5}\frac{1}{s^2-1}\}=\mathcal{L}\{\frac{-1}{5}\frac{1}{(s+1)(s-1)}\}
So this is where I get stuck using convolution. Since we know
\Rightarrow \mathcal{L}^{-1}\{\frac{1}{s+1}\} = e^{-t}
\Rightarrow \mathcal{L}^{-1}\{\frac{1}{s-1}\} = e^{t}
f(t)=e^{t}
g(t)=e^{t}
f(t) \ast g(t) = \int_{0}^{t}f(\tau)g(\tau-t)\,\,d\tau
\frac{1}{5}\int_{0}^{t}e^{-\tau}e^{\tau-t}\,\,d\tau<br /> = \frac{1}{5}\int_{0}^{t}e^{-\tau+\tau-t},\,\,d\tau<br /> = \frac{1}{5}\int_{0}^{t}e^{-t}\,\,d\tau \\<br /> =\frac{1}{5}\tau e^{-t} \bigg|_{\tau=0}^{\tau=t} = \frac{1}{5}te^{-t}<br />
 
Last edited:
Physics news on Phys.org
PiRho31416 said:

Homework Statement


\frac{d^{2}y}{dt^{2}}+4y=sin(t),\quad y(0)=0,\quad\frac{dy}{dt}(0)=0



Homework Equations


Laplace transform is defined as:
\mathcal{L}\{f(t)\} = \int_{-\infty}^{\infty}f(t)e^{st}dt


The Attempt at a Solution


<br /> \frac{d^{2}y}{dt^{2}}+4y=sin(t),\quad y(0)=0,\quad\frac{dy}{dt}(0)=0
s^{2}\mathcal{L}\{y\}-sy&#039;(0)-y(0)-4\mathcal{L}\{y\}=\frac{1}{s^{2}+1}
\mathcal{L}\{y\}(s^{2}-4)=\frac{1}{s^{2}+1}
\Rightarrow \frac{1}{s^{2}+1}\cdot \frac{1}{s^{2}-4}=\frac{As+B}{s^2+1}\cdot\frac{Cs+D}{s^2-4}
1 = (As+B)(s^2-4)\cdot(Cs+D)(s^2+1)
1 = As^3-4As+Bs^2-4B+Cs^3+Cs+Ds^2+D
1 = s^3(A+C)+s^2(B+D)+s(C-4A)+D-4B
\begin{bmatrix}<br /> 1 &amp; 0 &amp; 1 &amp; 0\\ <br /> 0 &amp; 1 &amp; 0 &amp; 1\\ <br /> -4 &amp; 0 &amp; 1 &amp; 0\\ <br /> 0 &amp; -4 &amp;0 &amp; 1<br /> \end{bmatrix}<br /> \begin{bmatrix}<br /> A\\ <br /> B\\ <br /> C\\ <br /> D<br /> \end{bmatrix}<br /> =\begin{bmatrix}<br /> 0\\ <br /> 0\\ <br /> 1\\ <br /> 0<br /> \end{bmatrix}<br /> \\\<br /> \begin{bmatrix}<br /> A\\ <br /> B\\ <br /> C\\ <br /> D<br /> \end{bmatrix} =<br /> \begin{bmatrix}<br /> -1/5 \\<br /> 0 \\<br /> 1/5 \\<br /> 0<br /> \end{bmatrix}


\mathcal{L}\{Y\}=\frac{1}{5}\frac{1}{s^2-1}-\frac{1}{5}\frac{1}{s^2+1}
\mathcal{L}\{Y\}=\frac{1}{5}\frac{1}{s^2-1}-\frac{1}{5}\frac{1}{s^2+1}
\Rightarrow\mathcal{L}\{\frac{1}{5}\frac{1}{s^2+1}\}=\frac{1}{5}sin(t)
\Rightarrow\mathcal{L}\{\frac{-1}{5}\frac{1}{s^2-1}\}=\mathcal{L}\{\frac{-1}{5}\frac{1}{(s+1)(s-1)}\}
So this is where I get stuck using convolution. Since we know
\Rightarrow \mathcal{L}^{-1}\{\frac{1}{s+1}\} = e^{-t}
\Rightarrow \mathcal{L}^{-1}\{\frac{1}{s-1}\} = e^{t}
f(\tau)=e^{-\tau}
g(\tau-t)=e^{\tau-t]
\frac{1}{5}\int_{0}^{t}e^{-\tau}e^{\tau-t}\,\,d\tau<br /> = \frac{1}{5}\int_{0}^{t}e^{-\tau+\tau-t},\,\,d\tau<br /> = \frac{1}{5}\int_{0}^{t}e^{-t}\,\,d\tau \\<br /> =\frac{1}{5}\tau e^{-t} \bigg|_{\tau=0}^{\tau=t} = \frac{1}{5}te^{-t}<br />

Why not use 1/[(s+1)(s-1)] = (1/2)[1/(s-1) - 1/(s+1)]?

RGV
 
Uhm. The Laplace transform of +4y is not -4Y.
 
Ray Vickson said:
Why not use 1/[(s+1)(s-1)] = (1/2)[1/(s-1) - 1/(s+1)]?

RGV

Thanks! Duh!
 
Wingeer said:
Uhm. The Laplace transform of +4y is not -4Y.

Pretty sure it is.
 
Pretty sure it's NOT!
If
\mathcal{L}(y)= \int_0^\infty e^{-st}y(t)dt
then
\mathcal{L}(4y)= \int_0^\infty e^{-st}4y(t)dt= 4\int_0^\infty e^{-st}y(t)dt= 4\mathcal{L}(y)
not -4\mathcal{L}(y).
 
Oh crap. The negative sign! Sorry it was late last night and somehow I thought he was saying \mathcal{L}\{y(t)\}\neq Y

Sorry about that. He even says it's +4y not -4y. Geez :-(

HallsofIvy said:
Pretty sure it's NOT!
If
\mathcal{L}(y)= \int_0^\infty e^{-st}y(t)dt
then
\mathcal{L}(4y)= \int_0^\infty e^{-st}4y(t)dt= 4\int_0^\infty e^{-st}y(t)dt= 4\mathcal{L}(y)
not -4\mathcal{L}(y).
 


For what it's worth: the convolution of exp(t) and exp(-t) is sinh(t), not c*t*exp(-t) or c*t*exp(t). You made an error in your convolution integral.

RGV
 


Ray Vickson said:
Why not use 1/[(s+1)(s-1)] = (1/2)[1/(s-1) - 1/(s+1)]
Ray Vickson said:
For what it's worth: the convolution of exp(t) and exp(-t) is sinh(t), not c*t*exp(-t) or c*t*exp(t). You made an error in your convolution integral.
The OP made several mistakes. There should be no 1/(s2-1) term in the problem in the first place.
 
Back
Top