How Do You Solve for x Given the Determinant of a Matrix?

Nile3
Messages
42
Reaction score
0
Find the value of x when the matrix equals 3:

|x-2 3|
|x x+1|

so I find the determinant:
(x-2)(x+1)-(x)(3)
x^2-4x-2

How do I find which values are giving 3 from here?
 
Physics news on Phys.org
Nile3 said:
Find the value of x when the matrix equals 3:
You mean when the determinant of the matrix equals 3. The matrix doesn't equal 3.

You found
$$\begin{vmatrix} x-2 & 3 \\ x & x+1 \end{vmatrix} = x^2-4x-2$$ so set that expression equal to 3 and solve for x.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top