viciado123
- 53
- 0
Damped vibration
m \frac{d^2x}{dt^2} + \gamma \frac{dx}{dt} + kx = 0
Characteristic equation is
mr^2 + \gamma r + k = 0
r_1 = \frac{- \gamma + \sqrt{( \gamma )^2 - 4mk}}{2m}
r_2 = \frac{- \gamma - \sqrt{( \gamma )^2 - 4mk}}{2m}
In overdamped
( \gamma )^2 - 4mk > 0
What I need to calculate to find the general solution:
x(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t} ?
m \frac{d^2x}{dt^2} + \gamma \frac{dx}{dt} + kx = 0
Characteristic equation is
mr^2 + \gamma r + k = 0
r_1 = \frac{- \gamma + \sqrt{( \gamma )^2 - 4mk}}{2m}
r_2 = \frac{- \gamma - \sqrt{( \gamma )^2 - 4mk}}{2m}
In overdamped
( \gamma )^2 - 4mk > 0
What I need to calculate to find the general solution:
x(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t} ?