How Do You Solve the Integral of e^(-x^2+2x) from 1 to Infinity?

  • Thread starter Thread starter imana41
  • Start date Start date
  • Tags Tags
    Integral
imana41
Messages
36
Reaction score
0
hi pleaes help me about this
[URL]http://latex.codecogs.com/gif.latex?\int_{1}^{\infty%20}e^{-x^2+2x}dx[/URL]

i know the [URL]http://latex.codecogs.com/gif.latex?\int_{0}^{\infty%20}e^{-x^2}dx[/URL] is [URL]http://latex.codecogs.com/gif.latex?\sqrt{%20pi}/2[/URL]
but can't solve above integral !?
 
Last edited by a moderator:
Physics news on Phys.org
Rewrite the power as:
<br /> -x^{2}+2x=-(x-1)^2+1<br />
It we define x-1=t,
<br /> -x^{2}+2x=-t^2+1<br />
so
<br /> e^{-x^{2}+2x}=e^{-t^2+1}=e^{-t^2}e^{1}<br />
and we also know that dx=dt, change the variable of integral and enjoy!
 
thanks the the answer of integral is
gif.latex?\frac{e\times%20\sqrt{pi}}{2}.gif
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top