How Do You Solve This Tricky Integration Problem Involving Pi and ln?

  • Thread starter Thread starter urduworld
  • Start date Start date
  • Tags Tags
    Integration
urduworld
Messages
26
Reaction score
0
1. Please Solve This Integration




untitledaa.jpg


3. Answer WIll Be Pi(ln)2/b]

Thanks In Advance :) Please SOlve This
 
Physics news on Phys.org
Perhaps you should try solving it yourself. A good starting place would be to integrate partially so you get rid of the logarithm inside the integral. Also remember to do x = sinh y often.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top