whkoh
- 29
- 0
Qn.
By using a suitable substituition, find
\int{\frac{1}{x\sqrt{1+x^n}}dx}
I haven't encountered this specific type of question before, so I went to use the obvious substitution
u^2=1+x^n, getting:
2u=n x^{n-1} \frac{dx}{du}\Leftrightarrow \frac{dx}{du}=\frac{2u}{n} x^{1-n}
Hence
\int{\frac{1}{x\sqrt{1+x^n}}dx}
=\int{\frac{2u}{n x^{1-n+1} \sqrt{u^2}}du
=\int{\frac{2ux^n}{nu}}du
=\int{\frac{2x^n}{n}}du
=\frac{2}{n}\int{x^n}du
=\frac{2}{n}\int{u^2-1}du
=\frac{2}{n}\left(\frac{1}{3}u^3 - u\right)+c
=\frac{2}{n}\left[\frac{1}{3}\left(1+x^n\right)^{\frac{3}{2}}-\sqrt{1+x^n}\right] +c
Is it correct?
By using a suitable substituition, find
\int{\frac{1}{x\sqrt{1+x^n}}dx}
I haven't encountered this specific type of question before, so I went to use the obvious substitution
u^2=1+x^n, getting:
2u=n x^{n-1} \frac{dx}{du}\Leftrightarrow \frac{dx}{du}=\frac{2u}{n} x^{1-n}
Hence
\int{\frac{1}{x\sqrt{1+x^n}}dx}
=\int{\frac{2u}{n x^{1-n+1} \sqrt{u^2}}du
=\int{\frac{2ux^n}{nu}}du
=\int{\frac{2x^n}{n}}du
=\frac{2}{n}\int{x^n}du
=\frac{2}{n}\int{u^2-1}du
=\frac{2}{n}\left(\frac{1}{3}u^3 - u\right)+c
=\frac{2}{n}\left[\frac{1}{3}\left(1+x^n\right)^{\frac{3}{2}}-\sqrt{1+x^n}\right] +c
Is it correct?