How Does a Roller Coaster's Loop Affect Your Apparent Weight?

ctpengage
Messages
33
Reaction score
0
Show that a roller coaster with a circular vertical loop. The difference in your apparent weight at the top of the circular loop and the bottom of the circular loop is 6 g's-that is, six times your weight. Ignore friction. Show also that as long as your speed is above the minimum needed, this answer doesn't depend on the size of the loop or how fast your go through it.

My working for the first half of the problem, the 6g's part is as follows

Radius if loop is R
Height from which it is released is h

The speed at bottom of the loop is determined by the conservation of mechanical energy
1/2 mvbottom2=2mgh

Apparent weight at the bottom of the loop is obtained by the below:

mvBot2= FNorm. Bot.-mg
Therefore apparent weight at bottom is
FNorm. Bot.=mvbot2/R+mg
FNorm. Bot.=2mgh/R+mg (using result obtained via conservation of energy)

To find speed at top of the loop we have from Conservation of Energy
1/2 mvtop2+mg(2R)=mgh
mvtop2=2mg(h-2R)
Therefore using the above the apparent weight at the top of the loop is

mvTop2/R = FNorm. Top.+mg
Therefore Apparent weight is :
FNorm. Top. = (2mg(h-2R))/R - mg

Hence
FNorm. Bot. - FNorm. Top. =
2mgh/R + mg - [((2mg(h-2R))/R - mg)]=
2mgh/R + mg - 2mgh/R + 4mg + mg=
6mg

That's how I proved the first part of the problem. Can anyone please tell me how to complete the second part of the problem; namely proving that as long as your speed is above the minimum needed, the answer doesn't depend on the size of the loop or how fast your go through it. This part of the problem is really bugging me and I've tried heaps of ways but can't come up with the answer.
 
Physics news on Phys.org
ctpengage said:
The speed at bottom of the loop is determined by the conservation of mechanical energy
1/2 mvbottom2=2mgh

To find speed at top of the loop we have from Conservation of Energy
1/2 mvtop2+mg(2R)=mgh
mvtop2=2mg(h-2R)

Hi ctpengage! :smile:

I'm a little confused …

you seem to have got the right result with the wrong equations. :confused:

You have two equations for conservation of energy, one for the top and one for the bottom …

but conservation means that the energy for top and bottom should be in the same equation, doesn't it? :smile:
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top