How does a thermocouple exploit the Seebeck effect?

AI Thread Summary
A thermocouple operates on the Seebeck effect, which involves two dissimilar metals joined at one end, creating a hot junction for temperature measurement and a cold junction at the other end. When the hot junction is heated, electrons diffuse from the hot end to the cold end, generating a potential difference due to the differing charge in the two metals. This setup creates a circuit that allows current to flow when one junction is heated. The effectiveness of a thermocouple is influenced by the specific materials used, with copper and constantan often being preferred for their differing thermoelectric properties. Understanding the distinction between the Seebeck effect and thermocouples is crucial, as the former can occur with a single metal, while the latter requires two different metals to function.
Daniel2244
Messages
125
Reaction score
5

Homework Statement


descibe the operational principle of a thermocouple

Homework Equations

The Attempt at a Solution


A thermocouple works using the seebeck affect. Two dissimilar metals joined together at one end forming a "hot" junction this is where the temperature is measured. At the other end the wires aren't joind this is the reference end (cold end). As the hot junction is heated, the heat is conducted at different speads in the two dissimlar metals. The electrons at the hot junction "diffuse" and move to the cooler end (reference end) of the wires making one of the wires more positively charged and the other more negatively charged as more electrons will be in the reference end of the better conductor wire creating a potential difference
 
Last edited:
Physics news on Phys.org
You are confusing two things.
In the Seebeck effect, only one metal is needed and no circuit. Electrons diffuse from the hot end to the cold, creating a potential difference.
In a thermocouple, strips of two different metals are connected at both ends, creating a circuit. With one end heated, a current flows.
See https://www.explainthatstuff.com/howthermocoupleswork.html
 
  • Like
Likes Daniel2244
So are you looking to see if you are correct? It's been awhile since I have worked with these, so I looked it up.
https://en.m.wikipedia.org/wiki/Thermocouple
So it looks like you sort of got it. The Seebeck Effect is the thermoelectric effect where temperature difference produces a voltage.
 
haruspex said:
You are confusing two things.
In the Seebeck effect, only one metal is needed and no circuit. Electrons diffuse from the hot end to the cold, creating a potential difference.
In a thermocouple, strips of two different metals are connected at both ends, creating a circuit. With one end heated, a current flows.
See https://www.explainthatstuff.com/howthermocoupleswork.html
So, A thermocouple works by two dissimlar metals being connected at each end. One end is called the hot junction and the other end is a cold junction. When heat is applied to the hot junction, electrons move between the hot junction of the different metals at a faster rate causing the two different juctions to have a different charge producing a voltage.
 
Yes, thermocouples operate on the Seebeck effect.

A typical setup is three junctions: T, T0 and TR where
T is temp. to be measured;
T0 is a reference temperature, often an ice bath;
and TR is the temperature of the measuring device, typically a potentiometer at room temperature so no current flows across the TR junctions. See attached "Seebeck effect.jpg" taken from Heat and Thermodynamics by M W Zemansky of CCNY, hopefully visible.

Each wire type A, B and C (note the same wire type C connecting T0 to TR) has its own characteristic "entropy transport parameter" S* and depends on the material and temperature of the wire. The emf's developed are across the wires so there are Δemf's developed between junctions a to c, c to e, e to d and d to b. Then the respective transport parameters are integrated over temperature over these four wires; the result after cancellation of the S*c parameters is
Δemfa,b ≈ (T - T0)(S*A - S*B) as desired.

Clearly we want to use wires A and B with ΔS* as different from one another as possible. I seem to remember copper and constantan.

There are other thermoelectric effects, e.g. Peltier and Joule. They're different phenomena.
 

Attachments

  • seebeck effect.jpg
    seebeck effect.jpg
    70.9 KB · Views: 484
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top