How Does Blackbody Radiation Relate to Standing Waves and Polarizations?

sachi
Messages
63
Reaction score
1
we have a hollow cubical box with sides of length a with perfectly conducting walls, such that the electric field tangential to the surfaces of the walls must be zero. we need to show that the system of standing waves:
Ex = Ax*cos(Kx*x)*sin(Ky*y)*sin(Kz*z)*exp(iwt)
Ey = Ax*sin(Kx*x)*cos(Ky*y)*sin(Kz*z)*exp(iwt)
Ez = Ax*sin(Kx*x)*sin(Ky*y)*cos(Kz*z)*exp(iwt)

satisfies the wave equation in 3-d. I can do this. We also need to show that they satisfy the condition that div(E)=0 (I think this is because there is no charge density in the box) provided that there are two independent polarisations for light.
just doing algebra I can get the expression (Kx*Ax + Ky*Ay + Kz*Az) = 0 , but I'm not sure how this connects to light having two independent polarisations (or in fact what it means for light to have two independent polarisiations). any hlpful hints would be appreciated.

Sachi
 
Physics news on Phys.org
For a given (K_x,K_y,K_z), you can think of the solution to the equation you derived as a plane in the 3d space (A_x , A_y , A_z ). How many independent directions are there on such a plane?
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top