How Does Charge Distribution Affect Electric Fields in a Coaxial Cable?

  • Thread starter Thread starter critter
  • Start date Start date
  • Tags Tags
    Coaxial Density
AI Thread Summary
In a coaxial cable with an inner positively charged cylinder and an outer neutral cylinder, the electric field between the cylinders is given by E=(2kλ)/r, while outside the outer cylinder, the field is zero. The outer cylinder, despite having no net charge, has surface charge densities that are equal and opposite to the inner cylinder's charge density, resulting in a charge of -λ on its inner surface. Gauss's law indicates that the total charge enclosed between the cylinders must be zero, leading to the conclusion that the outer surface of the outer cylinder has no charge. Understanding these relationships is crucial for analyzing electric fields in coaxial configurations.
critter
Messages
8
Reaction score
0
1. A long coaxial cable consists of an inner cylindrical conductor with radius "a" and an outer coaxial cylinder with inner radius "b" and outer radius "c." The outer cylinder is mounded on insulating supports and has no net charge. The inner cylinder has a positive charge per unit length λ. Calculate the electric field (A) at any point between the cylinders a distance "r" from the axis and (B) at any point outside the outer cylinder. (C) Find the charge per unit length on the inner surface and on the outer surface of the outer cylinder.



2. Parts A and B seem really simple, but maybe I'm looking at this wrong. I don't understand how the outer cylinder has any charge density since it was already stated that the outer cylinder has no net charge.



3. I think A and B might have the same answer: (2kλ)/r. This equation was given in the chapter summary in my textbook, but I somehow think they might be wanting a more extensive proof. I have no idea how to approach C since the information given in the problem seems contradictory.
 
Physics news on Phys.org
critter said:
I don't understand how the outer cylinder has any charge density since it was already stated that the outer cylinder has no net charge.
Just because the net charge is zero doesn't mean the surface charge densities are zero.
 
How would I solve for the density with what I'm given? Would they both be equal to λ?
 
critter said:
How would I solve for the density with what I'm given?
Use Gauss's law.
Would they both be equal to λ?
In magnitude.
 
I think I'm starting to understand. There is some charge q enclosed between the two cylinders. The inner cylinder produces the electric field E=(2kλ)/r, and the total flux is equal to 0, so the outer cylinder must produce a field E=(-2kλ)/r. In that way, the magnitudes of the densities would be the same. Am I thinking about this correctly?
 
critter said:
I think I'm starting to understand. There is some charge q enclosed between the two cylinders. The inner cylinder produces the electric field E=(2kλ)/r, and the total flux is equal to 0, so the outer cylinder must produce a field E=(-2kλ)/r. In that way, the magnitudes of the densities would be the same. Am I thinking about this correctly?
I'm not exactly sure what you are referring to when you say outer cylinder, since it has two surfaces. (I think you have it, but are expressing it unclearly.)

The inner cylinder (radius a) produces a field E=(2kλ)/r for r > a.

Since the field within the outer conducting cylinder (b < r < c) must be zero, Gauss's law tells you that the total charge enclosed must be zero. Thus the inner surface of the outer shell (at r = b) must have a charge equal and opposite to λ.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top