How Does Charge Distribution Affect Electric Fields in a Coaxial Cable?

  • Thread starter Thread starter critter
  • Start date Start date
  • Tags Tags
    Coaxial Density
AI Thread Summary
In a coaxial cable with an inner positively charged cylinder and an outer neutral cylinder, the electric field between the cylinders is given by E=(2kλ)/r, while outside the outer cylinder, the field is zero. The outer cylinder, despite having no net charge, has surface charge densities that are equal and opposite to the inner cylinder's charge density, resulting in a charge of -λ on its inner surface. Gauss's law indicates that the total charge enclosed between the cylinders must be zero, leading to the conclusion that the outer surface of the outer cylinder has no charge. Understanding these relationships is crucial for analyzing electric fields in coaxial configurations.
critter
Messages
8
Reaction score
0
1. A long coaxial cable consists of an inner cylindrical conductor with radius "a" and an outer coaxial cylinder with inner radius "b" and outer radius "c." The outer cylinder is mounded on insulating supports and has no net charge. The inner cylinder has a positive charge per unit length λ. Calculate the electric field (A) at any point between the cylinders a distance "r" from the axis and (B) at any point outside the outer cylinder. (C) Find the charge per unit length on the inner surface and on the outer surface of the outer cylinder.



2. Parts A and B seem really simple, but maybe I'm looking at this wrong. I don't understand how the outer cylinder has any charge density since it was already stated that the outer cylinder has no net charge.



3. I think A and B might have the same answer: (2kλ)/r. This equation was given in the chapter summary in my textbook, but I somehow think they might be wanting a more extensive proof. I have no idea how to approach C since the information given in the problem seems contradictory.
 
Physics news on Phys.org
critter said:
I don't understand how the outer cylinder has any charge density since it was already stated that the outer cylinder has no net charge.
Just because the net charge is zero doesn't mean the surface charge densities are zero.
 
How would I solve for the density with what I'm given? Would they both be equal to λ?
 
critter said:
How would I solve for the density with what I'm given?
Use Gauss's law.
Would they both be equal to λ?
In magnitude.
 
I think I'm starting to understand. There is some charge q enclosed between the two cylinders. The inner cylinder produces the electric field E=(2kλ)/r, and the total flux is equal to 0, so the outer cylinder must produce a field E=(-2kλ)/r. In that way, the magnitudes of the densities would be the same. Am I thinking about this correctly?
 
critter said:
I think I'm starting to understand. There is some charge q enclosed between the two cylinders. The inner cylinder produces the electric field E=(2kλ)/r, and the total flux is equal to 0, so the outer cylinder must produce a field E=(-2kλ)/r. In that way, the magnitudes of the densities would be the same. Am I thinking about this correctly?
I'm not exactly sure what you are referring to when you say outer cylinder, since it has two surfaces. (I think you have it, but are expressing it unclearly.)

The inner cylinder (radius a) produces a field E=(2kλ)/r for r > a.

Since the field within the outer conducting cylinder (b < r < c) must be zero, Gauss's law tells you that the total charge enclosed must be zero. Thus the inner surface of the outer shell (at r = b) must have a charge equal and opposite to λ.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top