How Does Differentiating Affect the Limit of an Integral Expression?

  • Thread starter Thread starter transgalactic
  • Start date Start date
  • Tags Tags
    Integral Limit
transgalactic
Messages
1,386
Reaction score
0
<br /> \lim_{x-&gt;+\infty} \frac{(\int_{0}^{x}e^{t^2}dt)^2}{e^{2x^2}}<br />
i was told to differentiate the integral in order to cancel it
but i don't have 0/0 infinity/infinity form
in order to differentiate the numerator and denominator.
 
Physics news on Phys.org
Of course you have infinity/infinity form. Obviously, \lim_{x\to +\infty} e^{2x^2} = +\infty and \lim_{x\to +\infty} \left( \int^x_0 e^{t^2} dt \right)^2 is infinity as well, since e^{x^2} diverges as x approaches infinity.
 
<br /> \lim_{x\to +\infty} \left( \int^x_0 e^{t^2} dt \right)^2<br />
so you are saying that when we do an ante derivative to the integral we input infinity there
so it goes to infinity

<br /> \lim_{x-&gt;+\infty} \frac{(\int_{0}^{x}e^{t^2}dt)^2}{e^{2x^2}}=\lim_{x-&gt;+\infty} \frac{(e^{x^2})^2}{4xe^{2x^2}}=\lim_{x-&gt;+\infty} \frac{1}{4x}=0<br />
is it correct??
 
transgalactic said:
<br /> \lim_{x\to +\infty} \left( \int^x_0 e^{t^2} dt \right)^2<br />
so you are saying that when we do an ante derivative to the integral we input infinity there
so it goes to infinity
"Anti-derivative to the integral"? An integral IS an anti-derivative. It should be clear that e^{t^2} is greater than 1 for all t> 1 so the integral must be unbounded.

<br /> \lim_{x-&gt;+\infty} \frac{(\int_{0}^{x}e^{t^2}dt)^2}{e^{2x^2}}=\lim_{x-&gt;+\infty} \frac{(e^{x^2})^2}{4xe^{2x^2}}=\lim_{x-&gt;+\infty} \frac{1}{4x}=0<br />
is it correct??
No, you've differentiated wrong. The derivative of (f(x))2 is 2 f(x) f'(x), not (f'(x))2.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top