How Does Electron Scattering Work in Crystalline Nickel Foil?

jecyca2003
Messages
1
Reaction score
0

Homework Statement


A beam of electrons with kinetic energy 50 eV is fired at a 100 nm thick crystalline nickel foil.
  1. (a) Calculate the speed of the electrons in the beam.
  2. (b) Based on your answer to part (a), state, with justification, whether classical (Newtonian) mechanics correctly describes this system.
  3. (c) Determine the de Broglie wavelength of the electrons.
  4. (d) Electrons incident on the nickel are scattered. The scattered electrons show strong peaks in intensity at particular orientations of the incident beam to the nickel target. Explain, with the aid of a detailed sketch, how this can be accounted for.

    The energy of the electrons is now increased to 50 MeV.
    1. (e) Repeat (a)-(c) above for these electrons, and from your results explain why the majority of electrons pass straight through the foil. You may find it useful to know that hc/2π = 197 MeV fm.
    2. (f) Occasionally one of the beam electrons elastically scatters from an atomic electron in the foil. Is momentum conserved in such reactions? Explain in words why the products of the reaction are not emitted at 90 degrees to one another.

Homework Equations


KE = 1/2 (m)(v^2)
λ = h/√(2KEm) (deBroglie Wavelength Equation)

The Attempt at a Solution


For part a) and c), I just plugged the numbers into the equation. I am not quite certain why the question emphasizes 100nm.

I am stuck mainly with the second half of the question d), e), and f). It would be very nice to get some help for those questions.
 
Last edited:
Physics news on Phys.org
look up the davisson gemer experiment. the peaks correspond to constructive interference from the scattered electrons.
 
Last edited:
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top