Per Oni
- 261
- 1
harrylin said:That should give the same answer, but it's a different picture from that of the OP. Faraday's law works for two different cases (and the second is even a whole class, related to relative motion!).
- What the OP refers to is the picture of constant magnetic flux lines, but of varying intensity.
- You seem to picture moving flux lines, such as when a magnet is moved towards a conductor.
- http://en.wikipedia.org/wiki/Faraday's_law_of_induction
Yeah I realize very well what the op is asking:
Many years ago I was pondering exactly the same question, which is: how can there be an E field in a conductor when there’s no dB/dt in the conductor? I was familiar with the concept that when magnetic field lines cut a conductor an electric field is set up in that conductor. But in case of a transformer (apparently) no lines ever cut the conductor. I therefore developed my own visualisation of a traveling B field. Of course I realized very well that to apply Faradays law for transformers no such picture was required.BUT! As my friend correctly stated, the only place where the B-field is non zero is inside the solenoid itself. …-dB/dt would have to be zero for all points in space except inside the it. And that means no electric field can possibly have been induced from the varying magnetic field in the solenoid …
At Q-eerus, I’m not sure what the content of your last post is saying.