How Does Load Cycle Frequency Affect the SN Curve?

AI Thread Summary
Load cycle frequency significantly impacts the SN curve, particularly when it approaches a component's natural frequency, leading to low cycle fatigue. At resonance, stress fluctuations increase dramatically, resulting in a lower number of load cycles until fracture compared to other frequencies. Standard SN curves are not applicable in this scenario, necessitating a more complex analysis of dynamic deflection and stress calculations. To account for resonance effects, a vibration model should be developed, and conservative failure criteria should be applied. Understanding these dynamics is crucial for accurately predicting material behavior under cyclic loading conditions.
Simas
Messages
19
Reaction score
2
Hi,

What is the effect of the load cycle frequency on the SN curve (Wöhler curve)? Especially when the frequency matches the natural frequency of the component/material?

Instinctively, I would think that at the natural frequency the number of load cycles until fracture is lower than at any other frequency due to increase of amplitude at resonance. But I do not understand how you can see/show this in the SN curve.

Thank you,
Simas
 
Engineering news on Phys.org
Unfortunately, as a component forced frequency approaches it natural frequency it transforms to a realm known as "low cycle fatigue" which is the reason that the S/N curve is specified for "high cycle fatigue". For more information on this issue do a web search for "low cycle fatigue" and you will find a large volume on the subject.
 
  • Like
Likes Simas
As you approach the natural frequency of a dynamic system, the system response typically increases rather drastically. This causes stress fluctuations that are far larger than those occurring for well-off natural frequency response.
 
Thank you both for your reply.

Following your answers, how do I calculate the stress during resonance?

For example, a typical cantilever beam as on the picture below, the bending stress in point B due to a cyclic force P is calculated as M(L)*y/I, with M(L) the bending moment in B (= P*L), y the height/2, and I the inertia moment. But this formula for the stress does not take into account the resonance effect, because according to this formula, the stress amplitude is the same for all frequencies. How do I take the resonance effect (drastic increase of the stress at natural frequency) into account?
images?q=tbn:ANd9GcTE9DDepCkAQuwWQnk7pNsvxcOMn-Jzd8UZON6ccQ0-J_54fjBg.png
 
I would suggest that you start with a vibration model based on distributed mass (distributed along the length of the beam). Obtain a solution for the dynamic deflection as a function of time and location. Then calculate the bending stress as Mc/I at point B.

The standard SN curves do not apply, so you are really flying blind at this point. I suggest that you apply a conservative failure criterion and see if it appears that cracks will propagate. If you want to get into more detail, research "fracture mechanics."

This is not a problem for amateurs!
 
Posted June 2024 - 15 years after starting this class. I have learned a whole lot. To get to the short course on making your stock car, late model, hobby stock E-mod handle, look at the index below. Read all posts on Roll Center, Jacking effect and Why does car drive straight to the wall when I gas it? Also read You really have two race cars. This will cover 90% of problems you have. Simply put, the car pushes going in and is loose coming out. You do not have enuff downforce on the right...
I'm trying to decide what size and type of galvanized steel I need for 2 cantilever extensions. The cantilever is 5 ft. The space between the two cantilever arms is a 17 ft Gap the center 7 ft of the 17 ft Gap we'll need to Bear approximately 17,000 lb spread evenly from the front of the cantilever to the back of the cantilever over 5 ft. I will put support beams across these cantilever arms to support the load evenly
Thread 'What's the most likely cause for this carbon seal crack?'
We have a molded carbon graphite seal that is used in an inline axial piston, variable displacement hydraulic pump. One of our customers reported that, when using the “A” parts in the past, they only needed to replace them due to normal wear. However, after switching to our parts, the replacement cycle seems to be much shorter due to “broken” or “cracked” failures. This issue was identified after hydraulic fluid leakage was observed. According to their records, the same problem has occurred...
Back
Top