How does one get time dilation, length contraction, and E=mc^2 from spacetime metric?

RelativeQuant
Messages
6
Reaction score
0
How does one get time dilation, length contraction, and E=mc^2 from the spacetime metric?

Suppose all that you are given is x12 + x22 + x32 - c2t2 = s2

How do you derive time dilation, length contraction, and E=mc^2 from this?

What is the most direct way to do this?
 
Physics news on Phys.org
You should take a look at Spacetime Physics, by Taylor and Wheeler, where this is all covered. It's only about 100 pages.
 
Thanks! Is there a quick answer of any resources on the web? Thanks! :)
 
RelativeQuant said:
How do you derive time dilation, length contraction, and E=mc^2 from this?
What is the most direct way to do this?

Start with time dilation. The squared distance between (0,0,0,0) and (T,vT,0,0) must equal the squared distance between (0,0,0,0) and (T',0,0,0) because it's the same interval between the same two points, namely the endpoints of a journey taken at speed ##v## as viewed by the traveller (primed coordinates) and an observer moving at speed ##v## relative to the traveller (unprimed coordinates). Use the metric to calculate the squared distances, equate them, and solve for the ratio of T' to T.
 
RelativeQuant said:
OK I found a concise way to derive time dilation & length contraction from the spacetime metric:
http://en.wikipedia.org/wiki/Introd...contractions:_more_on_Lorentz_transformations

Does anyone know how to derive E=mc^2 from time dilation and/or length contraction? Or from the spacetime metric?

Thanks! :)
This is not a simple. I don't think it can really be derived from the metric alone. You need to bring in, for example, energy and momentum conservation. Then, what you end up deriving from this plus the metric is E2 - p2c2 = m2c4 (once you have the right prior motivation, this just says that the 4-norm of m * 4-velocity unit vector is m, which is trivially true). When momentum is zero, you have the special case E=mc2.
 
Last edited:
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top