ueit said:
The double slit experiment is explained using not pure QM but a semiclassical approximation of it. The electron is treated as a quantum, but the wall, source and detector not. In order to find out what QM really predicts for such an experiment we need a detailed description of the system, that is, the quantum state of the whole system. The result of such a ridiculously complex calculation could give you a much better prediction about the experimental outcome.
That "ridiculously complex calculation" is nothing else but an MWI view on things. The "problem" with it is the following: if *everything* is described by quantum theory (ie, has a quantum state, a state in Hilbert space), then there's no "outside" which can make an "observation", and the only thing that's left is applying the Schroedinger equation to that quantum state, in which the Hamiltonian includes all the physical interactions between the electron, the screen, the photodetector, the computer, the computerscreen, your eyes, your brain and everything. Indeed at first sight ridiculously complex.
But we know that the Schroedinger equation, no matter how complicated the hamiltonian, is a linear equation.
That means that superpositions of solutions are also solutions.
Now, "electron through the left slit" is the starting state |left>, and if we take this as the starting situation, and solve this tremendiously complicated equation, we will find that the screen, the computer, your eyes, your brain ... will be in a certain quantum state, which we will symbolically represent by |observed-left>.
Similarly for "electron through the right slit", |right> ... which will result in the final quantum state |observed-right>
Well, what will now be the result when we allow for interference ?
Due to the linearity of the Schroedinger equation:
from |left> + |right> will simply follow:
|observed-left> + |observed-right>
In other words, "you" now appear TWO TIMES in the final state, with two *different* observations. This is when, in MWI, we say that "the observer has branched", which means, he now appears in two different states, with each a different outcome.
Or, we say that we now have "two copies" of the observer.
Or, we can say that we have now an "ensemble of observers" with two possibilities.
We didn't do anything special here. We didn't introduce any extra formal elements, we didn't change any equation... we simply assumed the axioms of quantum theory valid "all the way", and applied the Schroedinger equation, which contained all physical interactions (at a ridiculously detailled level). That's why I say that the "multiplication of observers" or the "appearance of an observer-ensemble" appears naturally in the quantum formalism, if you use it rigorously all the way.
Now, it turns out that we, subjectively, don't experience this "multitude of copies". So where does the "statistical aspect" of quantum mechanics seem to reside ? In the fact that we have to repeat the experiment somehow ? That doesn't appear nowhere in the formalism: we did everything for one single incident electron. We didn't start out with a hilbert space of states of several electrons.
No, we saw that, upon this single-electron event, there appeared an ensemble of observers "out of the single one that was present", through the use of the Schroedinger equation.
It hence seems *more natural* to me, as an interpretation of the quantum formalism, that in as much there is an ensemble (which must appear somehow, given that there are probabilities), that the ensemble is on the observer.
I don't want to ram this through people's throats (although it sometimes may sound like that :-), everybody is free to have his/her own ideas on the matter. But I don't find this view as "evidently untenable" as it is often suggested.