Firben
- 141
- 0
Homework Statement
I want to solve the motion equation
## m \frac {dv_z} {dt} = - μ \frac {∂B_z} {∂z} ##
with small angle approximation
Homework Equations
## B_z(z) = B_0 -bCos(\frac {zπ} {2L}) ## is the magnetic field in the z-direction
The Attempt at a Solution
Started by derive the magnetic field equation with resp. z
## m \frac {∂B_z} {∂z} = \frac {bπ} {2L} * μ * sin(\frac {zπ} {2L}) ##
and put it into eq above <=>
## m \frac {dv_z} {dt} = -μ \frac {bπ} {2L} * sin(\frac {zπ} {2L}) ##
<=>
small angles sin(x) ~ x
## \frac {dv_z} {dt} = - \frac μ m * \frac {bπ} {2L} * z ##
## v_z = \frac {dz} {dt} ## <=>
## \frac {d^2v_z} { dt^2} = - \frac {μb} {m} * \frac {μ} {2L} * z ##
Im not sure if this is correct