mrcleanhands
Homework Statement
Where T(x,t)=T_{0}+T_{1}e^{-\lambda x}\sin(\omega t-\lambda x)
\omega = \frac{\Pi}{365} and \lambda is a positive constant.
Show that T satisfies T_{t}=kT_{xx} and determine \lambda in terms of \omega and k.
I'm not to sure what is meant by the latter part of "determine \lambda in terms of \omega and k."
Homework Equations
The Attempt at a Solution
So I think I first have to find the partial derivatives of the first order.
\frac{\partial T}{\partial x}=-\lambda T_{1}e^{-\lambda x}\sin(\omega t-\lambda x)+T_{1}e^{-\lambda x}(-\lambda)\cos(\omega t-\lambda x)
\frac{\partial T}{\partial t}=T_{1}e^{-\lambda x}(\omega t)\cos(\omega t-\lambda x)I then work out the second order partial derivative with respect to x and here it gets kind of messy and where I get confused.
<br /> T_{xx}=-\lambda^{2}T_{1}e^{-\lambda x}\sin(\omega t-\lambda x)+T_{1}e^{-\lambda x}(-\lambda)\cos(\omega t-\lambda x)+(-\lambda^{2})T_{1}e^{-\lambda x}\cos(\omega t-\lambda x)+-\lambda^{2}T_{1}e^{-\lambda x}\sin(\omega t-\lambda x)
<br /> T_{xx}=-\lambda^{2}T_{1}e^{-\lambda x}\sin(\omega t-\lambda x)-\lambda^{2}T_{1}e^{-\lambda x}\sin(\omega t-\lambda x)-T_{1}e^{-\lambda x}\lambda\cos(\omega t-\lambda x)-\lambda^{2}T_{1}e^{-\lambda x}\cos(\omega t-\lambda x)
T_{xx}=-2\lambda^{2}T_{1}e^{-\lambda x}\sin(\omega t-\lambda x)-\lambda T_{1}e^{-\lambda x}\cos(\omega t-\lambda x)(1-\lambda)
T_{xx}=\lambda T_{1}e^{-\lambda x}(-2\lambda\sin(\omega t-\lambda x)-\cos(\omega t-\lambda x)(1-\lambda)<br />
This looks nothing like the partial derivative of the first order with respect to t...