How Does the Affine Connection Contract in General Relativity?

coqui82
Messages
2
Reaction score
0
Hi everyone!

I have some problems with indices in general relativity. I am now working with the classic textbook by S. Weinberg and in eq. (4.7.4) we find

http://latex.codecogs.com/gif.latex...partial g_{\rho \mu }}{\partial x^{\lambda }}

The question is: where does the last equality come from?
I think that it could come from the comparison between this expression and the same one interchanging μ and ρ. In so doing you would get the same expression except for the last two partial derivatives that would change their sign. Now if you consider (I am not sure if this is right) that http://latex.codecogs.com/gif.latex?\Gamma^{\mu}_{\mu \lambda }=\Gamma ^{\rho }_{\rho \lambda } then it comes straightforwardly that http://latex.codecogs.com/gif.latex...partial g_{\mu \lambda }}{\partial x^{\rho }}
Thanks in advance!
 
Physics news on Phys.org
(You can embed LaTeX code directly in your post by wrapping it with TEX or ITEX.)

Yes, you're correct, the reason the last two terms drop out is that they are antisymmetric in μ and ρ, and we're multiplying by gμρ which is symmetric.
 
Does Weinberg actually call the Christoffel symbols an affine connection :confused:?
 
Thanks a lot Bill! Much more clear now!
And yes, Weinberg uses both terms, although affine connection is a more general one.
 
WannabeNewton said:
Does Weinberg actually call the Christoffel symbols an affine connection :confused:?

What is wrong with this? :confused:
 
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Thread 'Dirac's integral for the energy-momentum of the gravitational field'
See Dirac's brief treatment of the energy-momentum pseudo-tensor in the attached picture. Dirac is presumably integrating eq. (31.2) over the 4D "hypercylinder" defined by ##T_1 \le x^0 \le T_2## and ##\mathbf{|x|} \le R##, where ##R## is sufficiently large to include all the matter-energy fields in the system. Then \begin{align} 0 &= \int_V \left[ ({t_\mu}^\nu + T_\mu^\nu)\sqrt{-g}\, \right]_{,\nu} d^4 x = \int_{\partial V} ({t_\mu}^\nu + T_\mu^\nu)\sqrt{-g} \, dS_\nu \nonumber\\ &= \left(...
Abstract The gravitational-wave signal GW250114 was observed by the two LIGO detectors with a network matched-filter signal-to-noise ratio of 80. The signal was emitted by the coalescence of two black holes with near-equal masses ## m_1=33.6_{-0.8}^{+1.2} M_{⊙} ## and ## m_2=32.2_{-1. 3}^{+0.8} M_{⊙}##, and small spins ##\chi_{1,2}\leq 0.26 ## (90% credibility) and negligible eccentricity ##e⁢\leq 0.03.## Postmerger data excluding the peak region are consistent with the dominant quadrupolar...
Back
Top