How Does the No-Slipping Condition Affect Wheel Rotation Dynamics?

schuksj
Messages
4
Reaction score
0
I have a question about this problem. A rotationally symmetric axle wheel system is smoothly joined to a fixed point O.

l=distance from O to CM
m=mass of axle wheel system
R=Radius of wheel
Is and I are the principal moments of inertia relative to CM.
The axle is horizonal as the wheel rolls over the horizonal ground without slipping. The radius of the circle desrcibed by the wheel is L. Show that he no-slipping condition leads to:

d(phi)/dt=-(R/L)*S

I started with Euler's equation for the x component and set theta double dot to zero.

so d(phi)dt*sin(theta)*Is*S-(d(phi)/dt)^2*sin(theta)*cost(theta)=-mLsing(theta)

I said that I=mR^2/2 and Is-mR^2

plugging those into the equation I got:

d(phi)/dt*sin(theta)*mR^2*S-(d(phi)/dt)^2*cos(theta)*sin(theta)*mR^2/2=-mLsin(theta). I then took away the 2nd part of the equation because it is a higher order term and got that d(phi)/dt=-L/(R^2*S). This isn't exactly the right answer and I was wondering what I was doing wrong! Thanks.
 
Physics news on Phys.org
I sitll have no idea how to do this problem. If someone could give me a clue I would really appreciate it. Thanks
 
To solve this, I first used the units to work out that a= m* a/m, i.e. t=z/λ. This would allow you to determine the time duration within an interval section by section and then add this to the previous ones to obtain the age of the respective layer. However, this would require a constant thickness per year for each interval. However, since this is most likely not the case, my next consideration was that the age must be the integral of a 1/λ(z) function, which I cannot model.

Similar threads

Back
Top