yungman
- 5,741
- 294
Homework Statement
This is part of the derivation of the direction of rotation of an ellipse in EM wave polarization. I need to find the direction of the change of phase \psi of the electric field vector with increase of time t. To make the long story short, for example:
\psi\;=\; \tan^{-1}\left(\frac{\cos(\omega t+\frac{\pi}{2})}{\cos \omega t}\right)\;=\; \tan^{-1}\left(\frac{-\sin(\omega t)}{\cos \omega t}\right)\;=\;-\omega t
From this we can conclude \psi DECREASE with INCREASE of t.
But if the constant is \delta where 0<\delta<\pi, how do I find the relation of \psi with time t?
Homework Equations
\psi\;=\; \tan^{-1}\left(\frac{\cos(\omega t+\delta)}{\cos \omega t}\right)
The Attempt at a Solution
\psi\;=\; \tan^{-1}\left(\frac{\cos(\omega t+\delta)}{\cos \omega t}\right)\;=\; \tan^{-1}\left(\frac{\sin(\omega t+\frac{\pi}{2}+\delta)}{\cos \omega t}\right)\;=\;\tan^{-1}\left(\frac {\cos\omega t \cos \delta\;-\; \sin\omega t \sin \delta}{\cos \omega t}\right)I don't know how to go beyond this to find the relation of \psi with t. Please help.
Thanks
Alan
Last edited: