Ahhhhh, now this make since.
I have a problem I am working on where there a 2N electrons (of mass m) that are free to move along the x-axis. The potential energy for each electron is U(x)=(1/2)kx^2, where k is a positive constant. I need to find the total energy of the system for a) integer angular momentum particls, and b) half-interger. (all magnetic and electric forces can be ignored.
so for a), the particles would act like bosons and not be restricted by the exclusion princple, i.e. they would all sit in the same quantum state. That would give a total energy of E=(2N)(1/2)k. (the x^2 can be dropped because all particles will be in the lowest and same state), giving E=Nk. omega=(k/m(r))^(1/2), and I can solve this in terms of k. However, would m(r), the reduced mass, be [2Nm(e)m(n)]/[(2Nm(e)+m(n))]? My thinking is that all electrons would be in one state and can be viewed as a single point mass of 2Nm(e). Can I do that?
As for part b with half-integer angular momentum, it would be just be E=(n+1/2)(h/2pi)w, which would become E=(n+1/2)(h/2pi)(k/m(r))^(1/2), correct?However, this does make a lot more sense now.