mahblah
- 19
- 2
Homework Statement
i know that
H |n> = \varepsilon_n |n>
H |i> = \varepsilon_i |i>
and i want to estimate
< n | e^{i H t / \hbar} V(t) e^{-i H t / \hbar} |i>
Homework Equations
<\psi | \varphi> = \int \psi^*(q) \varphi(q) dq
The Attempt at a Solution
i don't understand well how the operator interacts with the wave function... I'm pretty sure that the right solution is
< n | e^{i H t / \hbar} V(t) e^{-i H t / \hbar} |i> = \int{ \left(n e^{- i H t / \hbar}\right)^* V e^{-i \varepsilon_i t / \hbar}} i = \int n^* e^{i \varepsilon_n t / \hbar} V e^{-i \varepsilon_f t / \hbar} i= <n | V(t) | i> e^{i \frac{\varepsilon_n - \varepsilon_i}{\hbar}t}
but I'm not sure about "why is this the right way to do this" ... for example i don't know why H |n> = \varepsilon_n |n> implies e^{iHt / \hbar} |n> = e^{i \varepsilon_n t / \hbar } |n>... or why this way to do is wrong:
< n | e^{i H t / \hbar} V(t) e^{-i H t / \hbar} |i> = \int \left(n e^{i H t / \hbar}\right)^* e^{i H t / \hbar} V(t) i = \int n^* V(t) i = <n|V(t)|i>
(i didn't put the "dq" in the integral because i don't know in which variable i should integrate)
if someone can explain me why this is the right way to do this expression i'll be happy.
Last edited: