How Far Apart Are a Proton and an Alpha Particle at Their Closest Approach?

  • Thread starter Thread starter Meera.sheeda
  • Start date Start date
  • Tags Tags
    Approach
AI Thread Summary
The discussion focuses on calculating the distance of closest approach between a proton and an alpha particle, both initially moving at 0.01c. The user attempts to apply conservation of momentum and energy but struggles with the equations and units, leading to an incorrect result. Key points include the need to use the correct potential energy formula for charged particles and the suggestion to consider the center of momentum frame for accurate calculations. The correct answer is significantly different from the user's calculation, indicating a misunderstanding of the physics involved. Proper unit conversion and symbolic representation of quantities are recommended for clarity.
Meera.sheeda
Messages
4
Reaction score
0

Homework Statement



A proton and an alpha particle (q= +2e, m=4u) are fired directly at one another from far way, each with an initial velocity of 0.01c. What is their distance of closest approach, as measured between their centres?

Homework Equations



mivi = mf vf
and KEi +Ui = KEf + Uf

U = (q1 x q2 ) / (4επr)

KE= 0.5mv^2

Mass of proton: 1.67E-27
Charge of Proton: 1.692E-19
c = 3E8

The Attempt at a Solution



I'm sorry this question has been asked before but I didn't understand the explanations in those threads.

I tried using the conservation of momentum:
(1.67E-27 * 0.01c) - (4 * 1.67E-27 * 0.01c) = -(1.67E-27 * velocity of proton) + (4* 1.67E-27 * velocity of alpha particle)
∴ -9000000= -velocity of proton + 4*velocity of alpha particle
but then I don't understand how to find the velocities of the particles individually or how to get this equation into the KE equation.

When I tried using the conservation of energy I got:

½*1.67*10^-27*(0.01c)^2 + ½*4*1.67*10^-27*(0.01c)^2 = (3*1.602*10^-19) /4επr

∴ r = 115008.95

which is so far off, as the answer in the back of the book says: 1.93x10^-14

Which equation am I using wrong and how can I fix it?
 
Physics news on Phys.org
Using energy arguments, equate the initial k.e. of both particles to the potential energy of the particles when all their k.e. is gone.
 
Meera.sheeda said:

Homework Statement



A proton and an alpha particle (q= +2e, m=4u) are fired directly at one another from far way, each with an initial velocity of 0.01c. What is their distance of closest approach, as measured between their centres?

Homework Equations



mivi = mf vf
and KEi +Ui = KEf + Uf

U = (q1 x q2 ) / (4επr)

KE= 0.5mv^2

Mass of proton: 1.67E-27
Charge of Proton: 1.692E-19
c = 3E8

The Attempt at a Solution



When I tried using the conservation of energy I got:

½*1.67*10^-27*(0.01c)^2 + ½*4*1.67*10^-27*(0.01c)^2 = (3*1.602*10^-19) /4επr

∴ r = 115008.95

which is so far off, as the answer in the back of the book says: 1.93x10^-14
Use the correct units. What is 0.01c in SI units? What is the formula for potential energy of two charges a distance r apart? Nothing like (3*1.602*10^-19) /4επr for charges e and 2e.
 
I think you'll want to do the calculation in the center of momentum frame of reference. Because the masses are not equal, for observers in any other frame the closest approach will happen when the system still has kinetic energy.
 
The absolutely easiest way of solving this problem is to ask the following questions:
What is the velocity of the particles at the time of closest approach?
What is the kinetic energy at this point?
What must the potential energy be?
At what distance is this fulfilled?

You can go to the CoM frame but it is not necessary. I also suggest you keep the symbolic representations of your quantities and only insert them at the very end.
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanged mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top