How Far Does the Spring Compress When Two Colliding Masses Come to a Stop?

AI Thread Summary
The discussion centers on a collision between two masses, m1 and m2, where m1 is moving toward m2, which is attached to a spring. The conservation of momentum and mechanical energy equations are used to determine the maximum compression of the spring. Participants note that the calculated compression exceeds the spring's natural length, indicating a flaw in the initial setup or parameters. Concerns are raised about the unrealistic speed of m1, suggesting that a lower speed would yield a plausible result. Ultimately, it is concluded that the scenario presented is physically impossible, and the question may imply that the masses come to a complete stop with no distance between them.
azurken
Messages
14
Reaction score
0
An object with mass m1=0.4kg moves at v0=10 m/s toward a second object with mass m2 = 0.8kg. Attached to the second object is a spring with spring constant k = 200N/m, and natural length L0 = 0.1m. As the objects collide the spring is initially compressed. After compressing a maximum amount the spring then decompresses and the masses move apart. At the instant that the spring is compressed its maximum amount, the masses move with the same speed V. Determine the closest distant X, between the objects at this instant. Both momentum and mech energy are conserved.

M1=0.4kg
M2=0.8kg
V1=10 m/s
V2=0 (at rest)
K= 200N/m
L0=0.1m
X=?


2. Homework Equations
Vf=(m1v1+m2v2)/(m1+m2)

SPE=0.5Kx^2

KE=0.5mV^2

X=L-L0

3. The Attempt at a Solution
Vf=(.4)(10)/(1.2)=3.333

Alright so it's asking me maximum compression of the spring. and since they travel at the same speed later on I can count on them to have the masses combined at that moment right?

I used 1/2*m1v1^2=1/2*(m1+m2)*V^2 + 1/2*k*x^2

If i go with this formula, I'll get an X that is higher than the 0.1m of the natural length which doesn't make sense if it's compressing. (how can it compress more than 0.1m)
 
Physics news on Phys.org
azurken said:
An object with mass m1=0.4kg moves at v0=10 m/s toward a second object with mass m2 = 0.8kg. Attached to the second object is a spring with spring constant k = 200N/m, and natural length L0 = 0.1m. As the objects collide the spring is initially compressed. After compressing a maximum amount the spring then decompresses and the masses move apart. At the instant that the spring is compressed its maximum amount, the masses move with the same speed V. Determine the closest distant X, between the objects at this instant. Both momentum and mech energy are conserved.

M1=0.4kg
M2=0.8kg
V1=10 m/s
V2=0 (at rest)
K= 200N/m
L0=0.1m
X=?


2. Homework Equations
Vf=(m1v1+m2v2)/(m1+m2)

SPE=0.5Kx^2

KE=0.5mV^2

X=L-L0

3. The Attempt at a Solution
Vf=(.4)(10)/(1.2)=3.333

Alright so it's asking me maximum compression of the spring. and since they travel at the same speed later on I can count on them to have the masses combined at that moment right?

I used 1/2*m1v1^2=1/2*(m1+m2)*V^2 + 1/2*k*x^2

If i go with this formula, I'll get an X that is higher than the 0.1m of the natural length which doesn't make sense if it's compressing. (how can it compress more than 0.1m)


It can't compress that far, so the initial set-up is not plausible. I agree the "theoretical answer" is greater than 0.1 m.

10m/s is really fast for an object moving in the lab [you have to drop a brick 5m to get up to speeds like that]. I am sure that is mass 1 was only traveling at 1.0 m/s you would get both a plausible answer, and involving speeds and masses you might find in the lab.
 
Yeah I've confirmed it with someone else. The equation I used is correct. Either the spring constant is too small or/and the natural length is too small. The maximum the spring can absorb is even less than 1 J which leaves more than 19J left for the 2 masses KE to fill and can't be filled with 3.33 m/s alone for those two masses.

It's physically impossible and my teacher made a mistake IM SURE OF IT. It'll go to an answer greater than 0.1m. Which physically means there is no distance between them and the objects would be moving together with no space between them (meaning about roughly 5m/s for the two objects).
 
He didn't ask how far the spring compresses he asked how close the masses get. I suspect he knows the answer is zero.
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top