How finite element analysis differs from mathematic derivation in beam bending?

AI Thread Summary
Finite element analysis (FEA) using software like Abaqus can provide insights into beam tip deflection under various loading conditions, but the results can differ from classical beam bending theory. Increasing the number of elements generally leads to results that align more closely with theoretical predictions, as more nodes reduce the need for interpolation. The choice of displacement functions, such as linear, quadratic, or cubic, influences the accuracy of the model, with higher-order functions potentially improving agreement with theoretical results. However, the impact of these functions is complex and may depend on the specific material properties and boundary conditions used in the model. Understanding these nuances is essential for accurately interpreting FEA results in relation to classical beam theory.
olski1
Messages
14
Reaction score
0
So I just started learning to use the finite element package abaqus for modelling beam tip deflection under different loading conditions. I think I understand the theory behind it but was wondering if some one could answer a few questions about it to further my understanding.

Firstly, how do more elements in a simple beam with linear displacement deformation change the results compared to the classical beam bending theory results?

secondly, what would be the difference if i used a quadratic or cubic displacement function defining the deformation behaviour compared to the bending theory calculations while also increasing the number of elements?

Lastly, what would happen if i used a uniformly distributed load for the above cases?

I believe that more elements leads to closer agreement between theory and computer results as the derivation is a integral. however, I am not sure how the different deformation distributions (cubic and quadratic) affect the agreement from the theoretical results. Or for that matter how uniformly distributed loads are not perfectly represented by the modelling either.

These were just some points in the conceptual part of the book that like always have no direct answer. My beam bending theory has always been a little bit sketch, and I thought this would be a good time to rectify that.
 
Engineering news on Phys.org
olski1 said:
Firstly, how do more elements in a simple beam with linear displacement deformation change the results compared to the classical beam bending theory results?

It depends on if you're talking about 1-D, 2-D, or 3-D modeling. Are you just talking about "beam elements" which are geometrically just a line? Each element will give you results at the nodes, and then interpolated results between the nodes. The more nodes, the less interpolation has to be done. I think for most FEA codes the 1-D beam element is basically an implementation of simple beam bending theory.

olski1 said:
secondly, what would be the difference if i used a quadratic or cubic displacement function defining the deformation behaviour compared to the bending theory calculations while also increasing the number of elements?

I'm not sure what you mean by "quadratic or cubic displacement function," are you referring to the interpolation function in the element, or something else? Nonlinear material properties?
 
Last edited:
Mech_Engineer said:
I'm not sure what you mean by "quadratic or cubic displacement function," are you referring to the interpolation function in the element, or something else? Nonlinear material properties?

I suppose I mean the deformation properties of materials. For example, if I had results from computer modelling that showed better agreement with the theoretical results when using cubic displacement function over linear for 5 and 10 elements over a 1m beam what could I infer from that?
 
It's possible to model plastic deformation of a model using a material's a full stress-strain curve in most FEA codes. I'm not sure you can "infer" anything useful from plastic deformation of a 1-D beam model through; the stresses calculated will be off from the real case where geometry and how the beam is attached at the boundary conditions will widely affect the solution.
 
Posted June 2024 - 15 years after starting this class. I have learned a whole lot. To get to the short course on making your stock car, late model, hobby stock E-mod handle, look at the index below. Read all posts on Roll Center, Jacking effect and Why does car drive straight to the wall when I gas it? Also read You really have two race cars. This will cover 90% of problems you have. Simply put, the car pushes going in and is loose coming out. You do not have enuff downforce on the right...
I'm trying to decide what size and type of galvanized steel I need for 2 cantilever extensions. The cantilever is 5 ft. The space between the two cantilever arms is a 17 ft Gap the center 7 ft of the 17 ft Gap we'll need to Bear approximately 17,000 lb spread evenly from the front of the cantilever to the back of the cantilever over 5 ft. I will put support beams across these cantilever arms to support the load evenly
Thread 'What's the most likely cause for this carbon seal crack?'
We have a molded carbon graphite seal that is used in an inline axial piston, variable displacement hydraulic pump. One of our customers reported that, when using the “A” parts in the past, they only needed to replace them due to normal wear. However, after switching to our parts, the replacement cycle seems to be much shorter due to “broken” or “cracked” failures. This issue was identified after hydraulic fluid leakage was observed. According to their records, the same problem has occurred...
Back
Top