How Is Gravitational Potential Energy Calculated in a Rotating Stick Scenario?

AI Thread Summary
In a rotating stick scenario, the gravitational potential energy change can be determined by analyzing the center of mass displacement. The stick, with a mass of 0.170 kg and a length of 1.00 m, pivots about one end and swings from a horizontal to a vertical position. The key is to calculate the change in height of the center of mass, which moves from 0.5 m (when horizontal) to 0 m (when vertical). The potential energy change is calculated using the formula U = mgh, where h is the change in height of the center of mass. This approach simplifies the problem without needing to consider moment of inertia or angular velocity.
Kenchin
Messages
4
Reaction score
0
A stick with a mass of 0.170Kg and a length of 1.00m is pivoted about one end so it can rotate without friction about a horizontal axis. The meter stick is held in a horizontal position and released.

1) As it swings through the vertical, calculatethe change in gravitational potential energy that has occurred. Gravity = 9.81m/s^2

Alright So for this one I have no idea really where to begin except to find the Moment of inertia. 1/3 ML^2. Substituting I get 1/3 (.170kg) (1)^2

The problem with that is is that I don't know how to find the potential energy because there is no height given to use U=mgh. I tried to use Mgy(y is in cm) and that didnt work well because it gave me (.170kg)(9.81m/s^2)(100cm). Where would I go from here considering there is no w (angular velocity) or anything given.:confused:
 
Physics news on Phys.org
You are correct, you don't know the actual height, but you do know the change in height. Consider the centre of mass of the rule, a sketch may be helpful.

You don't actually need any moment of inertia calculations for this question.

-Hoot:smile:
 
The problem I guess that I'm having is visualizing the problem, the way I visualize it is a pendulum starting from the 0 or 2(pi) section and swinging to the (pi). Is this the proper visualization? If so then the maximum height would be 2m's. Then in this case it would be KE_1+PE_1=KE_2+PE_2. This way, KE_1=0, PE_1=.170Kg(9.81 m/s^2)(2m). But if this was the case then all the potential energy would convert into kinetic energy at the bottom of the swing (through the verticle). But this then yields nothing helpful, what might be wrong with my visualization?
 
Last edited:
The question states that the rule begins horizontal, the rule is then release and allowed to swing freely. The question asks what the change in potential energy is when the rule is pointing vertically down. Imagine the rule is a straight horiztonal line at y = 0, the rule now pivots about the origin until it is a straight line at x = 0. Think about that displacement of the centre of mass.

-Hoot
 
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top