How Is Gravitational Potential Energy Calculated in a Rotating Stick Scenario?

AI Thread Summary
In a rotating stick scenario, the gravitational potential energy change can be determined by analyzing the center of mass displacement. The stick, with a mass of 0.170 kg and a length of 1.00 m, pivots about one end and swings from a horizontal to a vertical position. The key is to calculate the change in height of the center of mass, which moves from 0.5 m (when horizontal) to 0 m (when vertical). The potential energy change is calculated using the formula U = mgh, where h is the change in height of the center of mass. This approach simplifies the problem without needing to consider moment of inertia or angular velocity.
Kenchin
Messages
4
Reaction score
0
A stick with a mass of 0.170Kg and a length of 1.00m is pivoted about one end so it can rotate without friction about a horizontal axis. The meter stick is held in a horizontal position and released.

1) As it swings through the vertical, calculatethe change in gravitational potential energy that has occurred. Gravity = 9.81m/s^2

Alright So for this one I have no idea really where to begin except to find the Moment of inertia. 1/3 ML^2. Substituting I get 1/3 (.170kg) (1)^2

The problem with that is is that I don't know how to find the potential energy because there is no height given to use U=mgh. I tried to use Mgy(y is in cm) and that didnt work well because it gave me (.170kg)(9.81m/s^2)(100cm). Where would I go from here considering there is no w (angular velocity) or anything given.:confused:
 
Physics news on Phys.org
You are correct, you don't know the actual height, but you do know the change in height. Consider the centre of mass of the rule, a sketch may be helpful.

You don't actually need any moment of inertia calculations for this question.

-Hoot:smile:
 
The problem I guess that I'm having is visualizing the problem, the way I visualize it is a pendulum starting from the 0 or 2(pi) section and swinging to the (pi). Is this the proper visualization? If so then the maximum height would be 2m's. Then in this case it would be KE_1+PE_1=KE_2+PE_2. This way, KE_1=0, PE_1=.170Kg(9.81 m/s^2)(2m). But if this was the case then all the potential energy would convert into kinetic energy at the bottom of the swing (through the verticle). But this then yields nothing helpful, what might be wrong with my visualization?
 
Last edited:
The question states that the rule begins horizontal, the rule is then release and allowed to swing freely. The question asks what the change in potential energy is when the rule is pointing vertically down. Imagine the rule is a straight horiztonal line at y = 0, the rule now pivots about the origin until it is a straight line at x = 0. Think about that displacement of the centre of mass.

-Hoot
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top