How Is the Center of Gravity Calculated for a Non-Uniform Rod?

  • Thread starter Thread starter decathlonist
  • Start date Start date
AI Thread Summary
The discussion focuses on calculating the center of gravity for a non-uniform rod with a linear mass density defined as l(x) = Ax kg/m. The correct answer for the center of gravity is determined to be 2L/3, confirmed through integration techniques. Participants emphasize the importance of understanding the concept of center of gravity and torque in solving the problem. The method involves dividing the rod into small segments, calculating torques, and using Riemann sums to derive the necessary integrals. The final calculations validate that the center of gravity is indeed located at 2L/3.
decathlonist
Hello,

I was studying for the test and I ran into the problem that I can't solve.

This problem involves the use of Calculus (in particular - integration). Although I do have a solution for the problem, I don't have any explanation for it. Can someone please tell me how we arrived to the final answer?

"A rod of length L and linear mass density l(x)=Ax kg/m, where A is a constant and x is measured in meters from one end of the rod. Assuming the rod is in a uniform gravitational field, determine the location of the center of the rod."

( center of gravity = 2L/3 )

Thank you
 
Physics news on Phys.org
Are you sure that the answer is 2L/3 ?
Because I think it's L*sqrt(2)/2 (the same as L/sqrt(2))
sqrt -> square root;
[?]
 
As "sir-pinski" was pointing out, you can't do a problem involving center of gravity until you know what that means! (It's remarkable how many people don't seem to notice that you can't do a problem if you don't know the definitions!)
The "center of gravity" is the point at which the rod would balance: the torque (twisting force) on one side about that point is equal to (and opposite) the torque on the other. The torque about a point is itself defined as the force applied times the distance from the point.

Imagine dividing the rod into small lengths, each of length dx, and treat the weight as constant on each small length (this technique should be familiar to you). Take the left end of the bar as x=0 and let "a" be the distance to the center of gravity (I would prefer x with a bar over it but..). For each point on the bar, at distance x from the left end, the distance from the center of gravity is |x-a|. However, if we just use x-a (rather than the absolute value) that will also allow us to treat left and right of it as positive and negative. The mass of each little "piece" of the rod is its density times its length: l(x)dx. The torque about the center of gravity of a little piece of the rod is (x-a)l(x)dx. The total torque would be [sigma](x-a)l(x)dx and in order to be balanced must be 0: [sigma](x-a)l(x)dx = 0 which is the same as [sigma]xl(x)dx= a[sigma]l(x)dx.

These are Riemann sums and in the limit become the integral:

[integral]xl(x)dx= a [integral]l(x)dx.
(The integral on the right is, of course, the total weight of the rod.)

In this particular case l(x)= Ax so [integral]l(x)dx= [integral]Axdx= (1/2)Ax2 evaluated between 0 and L= (1/2)Al2.

[integral]xl(x)dx= [integral]Ax<sup>2</sup>dx= (1/3)Ax<sup>3</sup>
evaluated between 0 and L= (1/3)AL3.

We must have (1/3)A L3= a(1/2)A L2 so

a= (2/3)L as advertised.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...

Similar threads

Back
Top