How is the First-Order Perturbation Energy Related to Magnetic Susceptibility?

schattenjaeger
Messages
176
Reaction score
0
Not really a problem, I'm reading these 10 pages from a solid-state book for a professor, and it's a little over my head. Excuse the lack of LATEX but I copied it from another board I posted, and if you can help you likely know the equations involved anyways. I'm not expected to understand it ALL of course(I've had undergrad QM), but I'd like to at least have someone explain this first part to me

...example when talking about magnetic susceptibility of solids where each atom or ion has a closed shell of electrons with high excitation energy, you get diamagnetism with the susceptibility given by chi=-Ze^2*N/(6mc^2)r^2 Z is the number of electrons in the atom, N is number of atoms per unit volume, r^2 is mean square radious of electron charge cloud

that's all good and well, but the mention that the derivation comes from the "first-order perturbation energy <0|e^2/2mc^2*A^2|0> where the 0s denote ground states and A is the magnetic vector potential

now from what little I know of pertubation theory, to get the first order energy correction you do <0|H'|0> where H' is the perturbed Hamiltonian and |0> is the unpertubed ground states. So the equation in the derivation in the preceding paragraph is vaguely of that form, but I don't get how e^2/2mc^2 * A^2 is the perturbed Hamiltonian
 
Physics news on Phys.org
Please cite the source - which text is this from?

Write the Hamiltonian for a charge in a vector potential (A), where the conjugate momentum is now p' = p-(e/c)A. All the additional terms that arise from the vector potential make up the perturbation.
 
Text is by Ziemann

Ok, thanks for that, but I don't see how even knowing the first order perturbation energy gets you that expression for susceptibility
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top