How Is the Resistance of a Falling Wire in a Magnetic Field Calculated?

AI Thread Summary
The discussion centers on calculating the resistance of a copper wire falling in a magnetic field. A wire hoop with a constant magnetic field of 1.1 T allows a copper wire to fall freely, reaching a terminal velocity of 3.4 m/s. The induced current from the changing magnetic flux leads to a magnetic force that balances the weight of the wire at terminal velocity, as explained by Lenz's Law. To find the resistance, the current can be calculated using the induced electromotive force (emf), and then Ohm's Law can be applied. Understanding these principles is essential for solving the problem effectively.
bchubz
Messages
4
Reaction score
0

Homework Statement


A wire hoop is placed in front of a strong magnet, with the magnetic field B=1.1 T, pointing as shown. The strength and direction of the magnetic field are constant through the loop. The sides of the hoop have a track in which a copper wire of length 9.1 cm and mass 25 g, is allowed to move freely with negligible friction. The wire is released and allowed to fall and reaches a constant velocity of 3.4 m/s. What is the resistance of the copper wire (assuming that the resistance of the wire hoop is negligible)?

I honestly don't know where to start, I've thought about trying to do something with resistivity but we weren't given anything about area, and then it throws me the velocity and I'm not sure what to do.
 
Physics news on Phys.org
It would be better if you attached a figure.
The basic premise of the problem is that the changing magnetic flux through the hoop will induce a current in the hoop and the external magnetic field will proceed to exert a force on the moving part of the hoop to slow it down---this is can be seen from Lenz's Law. Motional emf induced in such a way is directly proportional to velocity hence a terminal velocity will be reached--at that point the magnetic force will equal the weight.This way you can calculate current and then use the generalized Ohm's Law to calculate resistance.
Hope this gets you started.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top