How is the Taylor expansion of 1/|r-r'| done in electrodynamics?

silverwhale
Messages
78
Reaction score
2
I am wroking through an electrodynamics textbook and there is this Taylor expansion to do later a multipole expansion. But I can't figure out how the author does it. Please any help?

the expansion:

\frac{1}{|\vec{r}-\vec{r'}|} = \frac{1}{r} - \sum^3_{i=1} x'_i \frac{\partial}{\partial x_i} \frac{1}{r} + \frac{1}{2} \sum^3_{i,j=1} x'_i x'_j \frac{\partial}{\partial x_i} \frac{\partial}{\partial x_j}\frac{1}{r} + \mathellipsis

And he writes "the occurring differenciations were changed using:"

(\frac{\partial}{\partial x'_i} \frac{1}{|\vec{r}-\vec{r'}|})_{r'=0} = - (\frac{\partial}{\partial x_i} \frac{1}{|\vec{r}-\vec{r'}|})_{r'=0} = - \frac{\partial}{\partial x_i} \frac{1}{r}

I just can't follow his argument..
 
Physics news on Phys.org
The first line is just the statement of the taylor expansion (of a function of 3 variables) about r'.

It may not seem familiar because here he is expressing everything in terms of components.

As for the second line, all he is doing is taking the derivative of \frac{1}{|\vec{r}-\vec{r'}|} with respect to the coordinates of r'.

The he say, "Oh this will be the same as the negative derivative of the same function with respect to r." (The negative sign appears because of the chain rule and the negative in front of r' inside the function.)

If you don't believe this you can work out the derivatives explicitly and prove the relation. Use:

\frac{1}{|\vec{r}-\vec{r'}|}=\frac{1}{\sqrt{(x-x')^2+(y-y')^2+(z-z')^2}}
 
Is he doing the taylor expansion around r taking it as a constant and r' being the variable?

But all in all I got you argument! Thanks!
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top