How long does it take for an electron to spiral from \( r_i \) to \( r_f \)?

  • Thread starter Thread starter doggydan42
  • Start date Start date
  • Tags Tags
    Electron
doggydan42
Messages
169
Reaction score
18

Homework Statement


Find an expression for the time it takes for an electron to spiral in from an initial radius ##r_i## to a final radius ##r_f##. Write your answer in terms of ##r_i##, ##r_f##, ##m_e##, e, and c.

Homework Equations


Larmor Formula:
$$\frac{dE}{dt} = -\frac{2}{3}\frac{e^2a^2}{c^3}$$

Potential Energy:
$$V = -\frac{e^2}{r}$$

Magnitude of the force:
$$F = \frac{e^2}{r^2}$$

In another part of the problem, the velocity for radius r is calculated:
$$v(r) = \sqrt(\frac{e^2}{m_er})$$

The energy is also calculated to be:
$$E = -\frac{1}{2}\frac{e^2}{r}$$

The Attempt at a Solution


I tried solving it as a separable differential equation.
Most of the terms on the right were constants, so I focused on ##e^2a^2##.
Since it was circular motion, ##F = e^2/r^2 = m\frac{v^2}{r} = ma##, so ##a = \frac{v^2}{r}##.
So, ##a^2 = \frac{v^4}{r^2}##, using the formula for v(r),
$$a^2 = \frac{(\sqrt(\frac{e^2}{m_er}))^4}{r^2} = \frac{(\frac{e^2}{m_er})^2}{r^2} = \frac{e^4}{r^4m_e^2}$$
Since ##E =E = -\frac{1}{2}\frac{e^2}{r}##, ##\frac{e^2}{r} = -2E##, so
$$a^2 = \frac{(-2E)^2}{m_er^2}$$
So,
$$e^2a^2 = \frac{(-2E)^2e^2}{m_er^2} = \frac{(-2E)^3}{m_er} = \frac{-8E^3}{m_er}$$
Also, ##\frac{1}{r} = \frac{e^2}{re^2} = \frac{-2E}{e^2}##
So $$e^2a^2 = \frac{-8E^3}{m_e}\frac{-2E}{e^2} = \frac{16E^4}{m_ee^2}$$
Plugging this into the initial equation:
$$\frac{dE}{dt} = -\frac{2}{3}\frac{16E^4}{c^3m_ee^2} = -\frac{32}{3}\frac{E^4}{c^3m_ee^2}$$
Rearranging the terms:
$$\frac{3c^3m_ee^2}{32E^4}dE = -dt$$
Integrating both sides:
$$\int_{E_i}^{E_f} \frac{3c^3m_ee^2}{32E^4} dE = \int_{t_i}^{t_f} -dt$$
Solving the integral:
$$-\Delta t = \left[\frac{-c^3m_ee^2}{32E^3}\right]_{E_i}^{E_f}$$
or
$$\Delta t = \left[\frac{c^3m_ee^2}{32E^3}\right]_{E_i}^{E_f}$$

From there I could plug in ##E_i = E(r_i)##, and ##E_f = E(r_f)##

My concern is that the problem stated we would need differential equations, so I was unsure if this was a good approach.
 
Last edited:
Physics news on Phys.org
Your work looks good to me, except I think you dropped the square on the electron mass when going from the first to the second equation in your solution.
 
  • Like
Likes doggydan42
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top