How Long is the Astronaut Gone in the Twin Paradox with Circular Motion?

Urd
Messages
2
Reaction score
0

Homework Statement


A variation on the twin paradox, with uniform circular motion. The traveling sibling moves so that his acceleration is g at all times, pointing to the centre of his circular path, constant velocity. There is given that the trip takes twenty years in the frame of the traveller. Then how long will the astronaut be gone as seen by the inertial observer?


Homework Equations





The Attempt at a Solution


I have an expression for the time elapsed (as seen by the inertial observer) in function of radius and velocity. And as I'm unable to calculate radius or velocity for this problem, I am stuck.
 
Last edited:
Physics news on Phys.org
You have two equations:
2pi R=vT (T=20 years), and v^2=Rg.
Solve for R and v.
 
When I use these equations, the velocity is more then three times the speed of light?
 
The statement "his acceleration is g at all times" is ambiguous.
If it refers to his acceleration in the Earth system, you do get v~3c.
It must mean his acceleration in his rest system. In that case,
a in the Earth system is a=g(1-v^2/c^2), and
The centripetal equation becomes v^2=Ra=Rg(1-v^2/c^2), which eventually gives v<c.
Incidentally, if you work with LY (light years), then c=1 and g~1.
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top