How Many Different Numbers Can You Obtain?

  • Thread starter Thread starter golriz
  • Start date Start date
  • Tags Tags
    Numbers
golriz
Messages
43
Reaction score
0


You have 6 copies of each of the numbers 2,3,5,7. How many different numbers can be obtained as the product of between 2 and 4 of your numbers?
 
Physics news on Phys.org
any ideas? - as a first easy step, i would notice the 2,3,5,7 share no factors as they are prime
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top