How many electrons were transferred to create an attractive force of 1 N?

AI Thread Summary
To determine how many electrons are needed to create an attractive force of 1 N between two point charges, the charge of each point charge is calculated to be approximately 3.16 * 10^-06 C. The number of electrons transferred is found by dividing this charge by the charge of a single electron. This method is based on the principle that the total charge equals the number of charge carriers multiplied by the charge per carrier. Understanding this relationship is essential, as it applies to various scenarios involving division of total quantities. The explanation equates the concept to a simple problem of calculating the number of items sold based on total revenue, reinforcing the fundamental arithmetic involved.
Physics boi
Messages
2
Reaction score
0
Member advised to use the formatting template for all homework help requests
So there was a question in a textbook that went as so:

'Two point charges (30 cm apart in air) are charged by transferring electrons from one point to another. Calculate how many electrons must be transferred so that an attractive force of 1 N exists.'

It is assumed that both point charges are the same. It was calculated that the charge of each point charge is approximately 3.16 * 10^-06 C. Then this value was divided by the charge of an electron to get the number of electrons transferred. This was the correct answer

However, i do not understand why dividing the charge of the point charge by the charge of an electron gives the amount of electrons transferred. I cannot get around this concept. It would be great if some could walk me through exactly why this is the case.
 
Physics news on Phys.org
The number of charge carriers transferred must be the total charge divided by the charge per charge carrier. In this case the charge carriers are electrons.
 
Sorry, but i do not understand what a charge carrier is.
I am only in year 12. Could you please explain further. Thank you very much
 
(Number of electrons) x (the charge of one electron) = (Total charge)
When you know two of the variables, you can find the third using algebra.
 
Physics boi said:
However, i do not understand why dividing the charge of the point charge by the charge of an electron gives the amount of electrons transferred. I cannot get around this concept. It would be great if some could walk me through exactly why this is the case.
The concept that you mentioned is general and applicable to cases beyond charges, it involves elementary division and is taught by year 3 in most schools. It is the same concept as the one needed to solve the following problem: Jimmy sold apples at $0.20 each and collected $1.80. How many apples did Jimmy sell?

Instead of apples think electrons and instead of dollars per apple think Coulombs per electron.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top