How many volts/amps for an electric arc between points?

AI Thread Summary
To create a continuous electric arc between two sharp metal points in a hollow insulating cylinder, approximately 300,000 volts is required to ionize the air, based on the breakdown voltage of around 3 million volts per meter. This voltage may vary due to atmospheric conditions like pressure and moisture. After establishing the arc, the required amperage remains unclear and requires further investigation. Additionally, it is suggested that the voltage needed might decrease with increasing temperature, similar to the behavior observed in a Jacob's ladder. The discussion highlights the complexity of achieving and maintaining an electric arc in controlled conditions.
Transfixed
Messages
9
Reaction score
0
Can someone help me find these calculations or give me a point in the right directions?

If I have a hollow insulating cylinder (has a diameter of 5 cm and a length of 14 cm) with two (conductive) sharp metal point contacts at each end (measuring 2cm each leaving 10 cm exactly between the points). Inside the cylinder is normal atmosspheric pressure of standard air.

How do I calculate how many volts and amps I require to have a continuous electric arc between the contacts?

Thanks for your help and all answers are welcome.

:smile:
 
Engineering news on Phys.org
Thats a rather complicated question. To get any current flow at all you must first ionize, or breakdown the air. The breakdown voltage for air is roughly 3 million volts per meter - that varies with pressure and moisture content - so you need about 300,000 volts to start the arc. After that things get more complicated.
 
First of all thank you mheslep for the speedy reply, I appreciate it.

I could use an array of extremely high voltage generators to produce 300,000 to 330,000 volts and a continuous 10cm electric arc (assuming a standard pressure and temperature air mix), but this would still be a process of trial and error.

One more question is:

Assuming the cylinder is closed to outside influence and the walls are a suitable insulator to temperature, would the voltage required to generate the discharge should drop when the temperature increases on a steady curve, just like the rising temp of a high voltage traveling arc (Jacob’s ladder)?

I still have not found how many amps are required but I will keep searching. :)
 
mheslep said:
Thats a rather complicated question. To get any current flow at all you must first ionize, or breakdown the air. The breakdown voltage for air is roughly 3 million volts per meter - that varies with pressure and moisture content - so you need about 300,000 volts to start the arc. After that things get more complicated.

I get half that; 150KV. How did you arrive at 300?
 
3 × 10^6 V/m

I have found several sources like hypertextboox qouteing the average votage for dielectric breakdown of air around 3 × 10^6 V/m I took this as a base line and divided 3,000,000 by 100 then mutliplied it by 10 to arive at 300,000 volts for every 10cm.

Exclueding the build up of ozone and nitrous oxide on the sharp metal contacts causing corrision of course.

Where did you get 150,000 volts for 10cm?

as always thanks for the reply.
 
Doh! My mistake. 150KV per conductor. 300KV total, of course. But can one really ignore electron and ion drift?
 
Hi all I have some confusion about piezoelectrical sensors combination. If i have three acoustic piezoelectrical sensors (with same receive sensitivity in dB ref V/1uPa) placed at specific distance, these sensors receive acoustic signal from a sound source placed at far field distance (Plane Wave) and from broadside. I receive output of these sensors through individual preamplifiers, add them through hardware like summer circuit adder or in software after digitization and in this way got an...
I have recently moved into a new (rather ancient) house and had a few trips of my Residual Current breaker. I dug out my old Socket tester which tell me the three pins are correct. But then the Red warning light tells me my socket(s) fail the loop test. I never had this before but my last house had an overhead supply with no Earth from the company. The tester said "get this checked" and the man said the (high but not ridiculous) earth resistance was acceptable. I stuck a new copper earth...
Thread 'Beauty of old electrical and measuring things, etc.'
Even as a kid, I saw beauty in old devices. That made me want to understand how they worked. I had lots of old things that I keep and now reviving. Old things need to work to see the beauty. Here's what I've done so far. Two views of the gadgets shelves and my small work space: Here's a close up look at the meters, gauges and other measuring things: This is what I think of as surface-mount electrical components and wiring. The components are very old and shows how...
Back
Top