How Much Work Does Friction Do to Stop a Sliding Ball?

AI Thread Summary
The discussion focuses on calculating the work done by friction on a 1-kg ball sliding down a surface and coming to rest after traveling 15.8 meters on a rough surface. The potential energy at the starting height of 8.6 meters is calculated to be approximately 84.37 joules. Participants clarify that the initial surface is frictionless, and the rough surface begins at the bottom of the slide. The relationship between potential energy and kinetic energy is established, indicating that all potential energy converts to kinetic energy before friction does work to stop the ball. The final calculations involve using the coefficient of friction, normal force, and distance traveled to find the work done by friction.
Hughey85
Messages
14
Reaction score
0
Question:

A 1-kg ball starting at h = 8.6 meters slides down a smooth surface where it encounters a rough surface and is brought to rest at B, a distance 15.8 meters away. To the nearest joule what is the work done by friction?

Can you pls. help with this question? Do you need to find the potential energy and then work from there? potential E = mgy so you could find that... U = (1 kg) * (9.81 m/s) * (8.6 m) = 84.366

but how would I work it from there?
 
Physics news on Phys.org
i don't understand is the surface inclined or what

what is the 15.8m supposed to be the horizontal component (if it is inclined plane)?
 
The surface is a slope that evens out at the end...like a waterslide...by a smooth surface, I believe that means "frictionless"...the 15.8 meters represents the distance when you hit the rough surface to when you stop. The rough surface starts at the "bottom of the slide" and runs along the x-axis.

I hope this isn't confusing, the picture isn't, but I can't seem to copy it over.
 
from what you just explained

dU = dK from the top of the slide to the bottom all the potential is converted to kinetic energy

mgh = 0.5 m v^2

v1 = root (2gh)

now dK = Mu Fn d

where Mu is the coefficient, Fn is the normal force, and d is the dsitnace it travelled
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top