How much work is done to hold a book at a constant height?

AI Thread Summary
The discussion centers on calculating the work done to hold a 0.80 kg book at a height of 1.3 m for 5 seconds. Participants debate whether the work is 0 J, with some arguing that no displacement occurs, while others highlight the importance of understanding the forces involved. It is clarified that while the book is held stationary, the work done by the hand is zero due to no displacement, despite the potential energy being present. The conversation also touches on the distinction between work done by different forces, such as gravity and the hand, and the relevance of energy conservation in various scenarios. Ultimately, the consensus leans towards the conclusion that no work is done in holding the book at a constant height.
ktsa
Messages
6
Reaction score
3
New user has been reminded to always show their work when posting schoolwork questions
Homework Statement
how much work is done to hold a 0.80 kg book at a height of 1.3 m above ground for 5.0 s ?
Relevant Equations
Please can anyone help me with problem? I don't know if the work is 0 J
Please can anyone help me with problem? I don't know if the work is 0 J
 
Physics news on Phys.org
ktsa said:
Homework Statement: how much work is done to hold a 0.80 kg book at a height of 1.3 m above ground for 5.0 s ?
Relevant Equations: Please can anyone help me with problem? I don't know if the work is 0 J

Please can anyone help me with problem? I don't know if the work is 0 J
Per forum rules, you must show an attempt.
Explain why you think it could be zero.
 
I think it could be zero because no displacement done
But I am not sure of that.
Can you help me?
 
Can you tell us how work is defined in your course materials? Then evaluate each part of the appropriate equation. This should help you be sure. The problem isn't just to get the right answer, it's to understand why that answer is correct.

An example:
How much power (P, in Watts) is dissipated in a 20 Ohm resistor that has 10 Volts across it?
I know that the power is defined as P = V⋅I. I also know V = 10 Volts.
To find P, we also need to know the current through the resistor (I, in Amps). For that I know that Ohm's law defines the current as I = V/R. Since I know V =10 Volts and R = 20 Ohms, the current I = 10V/20Ω = 1/2 Amp.
So, back to P = V⋅I = 10 Volts ⋅ 1/2 Amp = 5 Watts.

And... yes, I am sure because I trust in each step of the process. I think you might not be sure because you are skipping steps in your analysis.
 
  • Like
Likes scottdave and Lnewqban
In fact, in this problem, I know that work can be calculated using the formula of
w= F d cos theta
W= KEf- KEi
W= EPf- EPi........ and so one.
But I ask for this because one other tutor said that the answer is 0 J because there is no displacement done, which can also be true. That is why I was wondering why it is not possible to use the change in potential energy to fing the work done when holding the book at that height.

Thank you
 
ktsa said:
why it is not possible to use the change in potential energy to fing the work done when holding the book at that height.
What is the change in potential energy? What is the change in kinetic energy?
 
ktsa said:
W= KEf- KEi
W= EPf- EPi........ and so one.
Not quite correct. This really should be one equation W = (KEf + EPf) - (KEi + EPi). There are circumstances, like pendulums and orbits where the change in kinetic energy is exactly compensated by an opposite change in potential energy, with no net work done. Those formulas only work if you specify that the other sort of energy doesn't also change.

Energy can appear in different forms. It is all of the energy (the sum) that is conserved (unchanged without work being done).
 
  • Like
Likes scottdave and Lnewqban
Ok. Thank you
 
ktsa said:
...
But I ask for this because one other tutor said that the answer is 0 J because there is no displacement done, which can also be true. That is why I was wondering why it is not possible to use the change in potential energy to fing the work done when holding the book at that height.
I believe that the key is in the question:
“how much work is done to hold a 0.80 kg book at a height...

How did the book get there seems to be irrelevant in this case.
Potential energy is always a relative concept, and we always need to consider a change in height.
 
  • Like
Likes SammyS and ktsa
  • #10
ktsa said:
Homework Statement: how much work is done to hold a 0.80 kg book at a height of 1.3 m above ground for 5.0 s ?
I think this question is just a tad ambiguous because it does not specify the force that does the work. It could be the work done by gravity or by the hand holding the book or by the net force. Of course, in this case it doesn't matter because, as has already been argued, the displacement is zero hence neither force does work on the book and adding the two to get the work done by the net force yields zero.
ktsa said:
That is why I was wondering why it is not possible to use the change in potential energy to fing the work done when holding the book at that height.
Here is where it becomes important to know which force does the work. The change in potential energy is by definition the negative of the work done by a conservative force. You can use the definition here if the problem specifically asked you to find the work done by gravity but not if it asked you to find the work done by the hand.
DaveE said:
There are circumstances, like pendulums and orbits where the change in kinetic energy is exactly compensated by an opposite change in potential energy, with no net work done.
I find this statement misleading. Take a simple pendulum that swings from maximum height ##h## to the lowest point of the motion. There are two forces acting on the bob:
1. Gravity that does work ##W_{\!g}=mgh##.
2. Tension that does zero work, ##W_T=0##, because the force is always perpendicular to the displacement.

We have a system that conserves mechanical energy yet the net work, i.e. the sum of the works done by all the forces, is non-zero, ##W_{net}=W_{\!g}+W_T=mgh.##
 
  • Like
Likes MatinSAR, nasu and DaveE
  • #11
DaveE said:
There are circumstances, like pendulums and orbits where the change in kinetic energy is exactly compensated by an opposite change in potential energy, with no net work done. Those formulas only work if you specify that the other sort of energy doesn't also change.
kuruman said:
I find this statement misleading. Take a simple pendulum that swings from maximum height ##h## to the lowest point of the motion. There are two forces acting on the bob:
1. Gravity that does work ##W_{\!g}=mgh##.
2. Tension that does zero work, ##W_T=0##, because the force is always perpendicular to the displacement.

We have a system that conserves mechanical energy yet the net work, i.e. the sum of the works done by all the forces, is non-zero, ##W_{net}=W_{\!g}+W_T=mgh.##
Yes. I shouldn't have said that. The work-energy theorem...
 

Similar threads

Back
Top