How Similar Are the Integrals of e^(cos(t)-t)/5 and e^(-t/5)?

  • Thread starter Thread starter ns5032
  • Start date Start date
  • Tags Tags
    Integral
ns5032
Messages
27
Reaction score
0
I'm in the middle of a LONG problem and came across a part where I need to do this integral:

integral of: e^[(cos(t)-t)/5]

Please help!
 
Physics news on Phys.org
I'm pretty sure you need to solve this numerically. Is that acceptable for the problem?
 
It's very amusing to consider instead the function
<br /> e^{-t/5}<br />
It looks almost just like your function but with a few less little "fine structure" wiggles.

The integrals of both functions should be rather similar. For example
<br /> \int_0^{\infty} e^{(-t/5)}=5<br />
whereas
<br /> \int_0^{\infty}e^{(Cos[t]-t)/5}\approx 5.09<br />
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top