Inverse Laplace transforms via rean & complex methods
The real variable method (what HallsofIvy suggested):
Notation: Suppose that \ell \{ f(t) \}=F(P) is the Laplace transform of f(t), so that \ell ^{-1} \{ F(P) \}=f(t) is the inverse Laplace transform of F(P).
Work: From
F(P)=\frac{1-P}{P^2+4P+13},
write
\ell ^{-1} \{ F(P)\} =\ell ^{-1} \left\{ \frac{1-P}{P^2+4P+13}\right\} = \ell ^{-1} \left\{ \frac{1-P}{(P+2)^2+9}\right\} = \ell ^{-1} \left\{ \frac{3-(P+2)}{(P+2)^2+3^2}\right\}
=\ell ^{-1} \left\{ \frac{3}{(P+2)^2+3^2}-\frac{P+2}{(P+2)^2+3^2}\right\} = \ell ^{-1} \left\{ \frac{3}{(P+2)^2+3^2}\right\}-\ell ^{-1} \left\{ \frac{P+2}{(P+2)^2+3^2}\right\}
= e^{-2t}\ell ^{-1} \left\{ \frac{3}{P^2+3^2}\right\}-e^{-2t}\ell ^{-1} \left\{ \frac{P}{P^2+3^2}\right\}
since \ell ^{-1} \left\{ F(P-a)\right\} = e^{at}\ell ^{-1} \left\{ F(P)\right\}, continuing on we have
\ell ^{-1} \{ F(P)\}= e^{-2t}\ell ^{-1} \left\{ \frac{3}{P^2+3^2}\right\}-e^{-2t}\ell ^{-1} \left\{ \frac{P}{P^2+3^2}\right\} = e^{-2t}\sin{3t} - e^{-2t}\cos{3t} ,
where the inverse transforms of sin and cos are off the table.
In conclusion,
\boxed{ \ell ^{-1} \{ F(P)\}= e^{-2t}\left( \sin{3t} - \cos{3t}\right) }
The complex variable/partial fraction decomposition method (continuing my eariler post): From
F(P) = \frac{1-P}{P^2+4P+13} = \frac{1-P}{(P+2+3i)(P+2-3i)} = \frac{1}{2}\left( \frac{-1+i}{P+2+3i}-\frac{1+i}{P+2-3i}\right)
write
\ell ^{-1} \{ F(P)\} = \ell ^{-1} \left\{ \frac{1}{2}\left[ \frac{-1+i}{P-(-2-3i)}-\frac{1+i}{P-(-2+3i)}\right] \right\}
= \frac{1}{2} \ell ^{-1} \left\{ \frac{-1+i}{P-(-2-3i)} \right\} -\frac{1}{2} \ell ^{-1} \left\{ \frac{1+i}{P-(-2+3i)}\right\}
= \frac{-1+i}{2} \ell ^{-1} \left\{ \frac{1}{P-(-2-3i)} \right\} -\frac{1+i}{2} \ell ^{-1} \left\{ \frac{1}{P-(-2+3i)}\right\}
= \frac{-1+i}{2} e^{(-2-3i)t} -\frac{1+i}{2} e^{(-2+3i)t} = \frac{-1+i}{2} e^{-2t}e^{-3it} -\frac{1+i}{2} e^{-2t}e^{3it}
= \frac{e^{-2t}}{2}\left[ (-1+i) e^{-3it} -(1+i)e^{3it}\right] = \frac{1}{2}e^{-2t}\left[ -(e^{3it} +e^{-3it}) -i(e^{3it} -e^{-3it}) \right]
= e^{-2t}\left[ -\frac{e^{3it} +e^{-3it}}{2} +\frac{e^{3it} -e^{-3it}}{2i} \right] = e^{-2t}\left( -\cos{3t} +\sin{3t}\right)
So, in conclusion, except for the sign error I'm hoping someone will spot for me, we have
\boxed{ \ell ^{-1} \{ F(P)\} = e^{-2t}\left( -\cos{3t} +\sin{3t}\right) }