How to compute the energy needed to compress the water isothermally?

  • Context: MHB 
  • Thread starter Thread starter WMDhamnekar
  • Start date Start date
  • Tags Tags
    Energy Water
Click For Summary
SUMMARY

The energy required to compress water isothermally at 20°C is calculated to be approximately 229 Joules when accounting for the changing pressure from 1 atmosphere to 100 atmospheres. The initial calculation of 506 Joules assumes constant pressure, which is an upper estimate. The discrepancy with the provided answer of 29.4 Joules indicates a miscalculation or misunderstanding of the compressibility of water, which is approximately 4.4 to 5.1×10-10 Pa-1. The discussion emphasizes the importance of accurately considering the compressibility factor in energy calculations.

PREREQUISITES
  • Understanding of isothermal processes in thermodynamics
  • Familiarity with the concept of compressibility and its mathematical representation
  • Basic knowledge of pressure units, specifically atmospheres and Pascals
  • Proficiency in calculus for integrating variable pressure scenarios
NEXT STEPS
  • Study the principles of isothermal compressibility in fluids
  • Learn how to apply calculus to variable pressure scenarios in thermodynamic calculations
  • Investigate the properties of water at different temperatures and their effect on compressibility
  • Explore the relationship between force, distance, and work in mechanical systems
USEFUL FOR

Chemists, physicists, and engineers involved in thermodynamic calculations, particularly those focusing on fluid mechanics and energy assessments in compressible fluids.

WMDhamnekar
MHB
Messages
378
Reaction score
30
Hi,
Answer given is $E_n=29.4 Joules$ Here is the question.

1602942344841.png


Answer provided by the Chemistry math expert/Professor is as follows but it is different from the answer given. How is that?

Compressibility is the fractional change in volume per unit increase in pressure. For each atmosphere increase in pressure, the volume of water would decrease 46.4 parts per million.
I'll pick a shape for the device, calculate distance traveled and force required, and use $work = force \times distance.$
with 100 atm, volume would decrease by 4640 PPM or by a factor of 0.00464

10 kg of water is about 10 liters or $0.01 m^3$

$100 atm = 1.013e7 Pa$ or $1.013e7 N/m^2$
assume a cube shape, height is $\sqrt[3]{0.01 m^3} = 0.2154435 m$ and base area is$ 0.0464159 m^2$ (coincidence that "464" appears as two different values)
force on piston is $1.013e7 N/m^2 \times 0.0464 m^2 = 470000 N$
that change in volume causes what change in height

new volume $= 0.01 m^3 – 0.01 m^3(0.00464) = 0.00995 m^3$

which has a height of $\frac{0.00995 m^3}{0.0464159 m^2} = 0.2143663 ,$

change is 0.2154435 – 0.2143663 = 0.00108 m
energy = Fd = (470000 N)(0.00108 m) = 506 JIs temperature of water $20^\circ C$ to be considered?
 
Last edited:
Mathematics news on Phys.org
Dhamnekar Winod said:
Answer given is $E_n=29.4 Joules$ Here is the question.

Answer provided by the Chemistry math expert/Professor is as follows but it is different from the answer given. How is that?
(snip)
force on piston is $1.013e7 N/m^2 \times 0.0464 m^2 = 470000 N$
that change in volume causes what change in height
new volume $= 0.01 m^3 – 0.01 m^3(0.00464) = 0.00995 m^3$
which has a height of $\frac{0.00995 m^3}{0.0464159 m^2} = 0.2143663 ,$
change is 0.2154435 – 0.2143663 = 0.00108 m

energy = Fd = (470000 N)(0.00108 m) = 506 J
Your expert's answer assumes that the force/pressure is constant at 100 atmosphere, but that is not the case.
Instead it will build up from 1 atmosphere up to 100 atmosphere.
So we can expect the actual answer to be about half of that $506\,J$, which is really an upper estimate.

I found $229\,J$ myself while taking the changing pressure into account with Calculus, which is indeed in the neighborhood of half of that $506\,J$.
Either way, it looks as if the answer of $29.4\,J$ is not correct.

Is temperature of water $20^\circ C$ to be considered?

We take the coefficient of isothermal compressibility of water at $20^\circ C$.
Wikipedia mentions that it is $4.4$ to $5.1×10^{-10}\, Pa^{-1}$ in ordinary conditions.
Close enough to that 46.4 parts per million that you mentioned.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
5
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
3
Views
8K
Replies
8
Views
3K
  • · Replies 19 ·
Replies
19
Views
3K