How to compute the surface an N-sphere using delta functions

charlesmartin14
Messages
13
Reaction score
1
Homework Statement
I am trying to understand how to compute the surface an N-sphere , for large N, to leading order (and exactly)

Given a vector J with norm N, with N large, how does one compute the volume integral ? That is, what representation of the delta function. And what is the exact result ?
Relevant Equations
various delta function representations
Problem Statement: I am trying to understand how to compute the surface an N-sphere , for large N, to leading order (and exactly)

Given a vector J with norm N, with N large, how does one compute the volume integral ? That is, what representation of the delta function. And what is the exact result ?
Relevant Equations: various delta function representations

.
 
Physics news on Phys.org
∫dJδ(J2-N)≈exp(N/2(1+ln2π))

The area of an N-sphere goes like 2πN/2 so I know this is close but I am haven't remembered the trick yet how to get the exact result
 
charlesmartin14 said:
Problem Statement: I am trying to understand how to compute the surface an N-sphere , for large N, to leading order (and exactly)

Given a vector J with norm N, with N large, how does one compute the volume integral ? That is, what representation of the delta function. And what is the exact result ?
Relevant Equations: various delta function representations

.
Is this what you are after?
https://en.m.wikipedia.org/wiki/N-sphere#Recurrences
 
No I was thinking more to use a relation like

$$\delta[g(x)]=\dfrac{\delta(x-x_{0})}{|g'(x)|_{x=x_{0}}}$$

or maybe the simpler relation

$$\delta[(x^{2}-a^{2})]=\dfrac{1}{2|a|}[\delta(x+a)+\delta(x-a)]$$

so that we can reduce

$$\delta[(\mathbf{J}^{2}-N)]=\dfrac{1}{2N^{1/2}}[\delta(\mathbf{J}+\sqrt{N})+\delta(\mathbf{J}-\sqrt{N})]$$

Which should give 2 identical values when integrated over ##\int\;d\mathbf{J}##. Then we need to represent ##\int\;d\mathbf{J}## using

$$d\mathbf{J}=\Pi_{i=1}^{N}dj_{i}$$

and then compute the integral as a product of N identical integrals over ##dj_{i}##

OR

I suppose one could try to do the ##\int\;d\mathbf{J}## integral in N-dim spherical coordinates, and then the relation (above on wikipedia) might be useful

EVENTUALLY

I want to add some constraints on the ##\mathbf{J}## vectors, such as specifying an arbitrary vector ##\mathbf{K}##, and asking what is

$$\int\;d\mathbf{J}\delta(\mathbf{J}^{2}-N)\delta(\dfrac{1}{N}\mathbf{J}^{T}\mathbf{K}-E)=?$$

So I would like to work it all out, in gross detail, using the delta function forms
 
Last edited:
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top