Exulus
- 50
- 0
Hi guys, hoping someone can help with this manipulation. I need to transform this:
\frac{-\hbar^2}{2m}\frac{d^2}{dx^2}u(x) + \frac{1}{2}m\omega^2 x^2 u(x) = Eu(x)
Into its dimensionless form:
\frac{d^2}{dy^2}u(y) + (2\epsilon - y^2)u(y) = 0
I have the following info:
E = \epsilon\hbar\omega
x = y\sqrt{\frac{\hbar}{m\omega}}
Heres what I've done so far:
\frac{-\hbar^2}{2m}\frac{d^2}{dx^2}u(x) + \frac{1}{2}m\omega^2 y^2 \frac{\hbar}{m\omega} u(x) = \epsilon\hbar\omega u(x)
\frac{-\hbar}{m}\frac{d^2}{dx^2}u(x) + \omega^2 y^2 u(x) = 2\epsilon\omega u(x)
\frac{\hbar}{m}\frac{d^2}{dx^2}u(x) + 2\epsilon\omega u(x) - \omega^2 y^2 u(x) = 0
\frac{\hbar}{m}\frac{d^2}{dx^2}u(x) + (2\epsilon - y^2)\omega u(x) = 0
But i can't see where to go next..i know i must be close to the end though..surely!
\frac{-\hbar^2}{2m}\frac{d^2}{dx^2}u(x) + \frac{1}{2}m\omega^2 x^2 u(x) = Eu(x)
Into its dimensionless form:
\frac{d^2}{dy^2}u(y) + (2\epsilon - y^2)u(y) = 0
I have the following info:
E = \epsilon\hbar\omega
x = y\sqrt{\frac{\hbar}{m\omega}}
Heres what I've done so far:
\frac{-\hbar^2}{2m}\frac{d^2}{dx^2}u(x) + \frac{1}{2}m\omega^2 y^2 \frac{\hbar}{m\omega} u(x) = \epsilon\hbar\omega u(x)
\frac{-\hbar}{m}\frac{d^2}{dx^2}u(x) + \omega^2 y^2 u(x) = 2\epsilon\omega u(x)
\frac{\hbar}{m}\frac{d^2}{dx^2}u(x) + 2\epsilon\omega u(x) - \omega^2 y^2 u(x) = 0
\frac{\hbar}{m}\frac{d^2}{dx^2}u(x) + (2\epsilon - y^2)\omega u(x) = 0
But i can't see where to go next..i know i must be close to the end though..surely!