How to Derive Electrostatic Boundary Conditions for Polarisation Field P?

dsta
Messages
8
Reaction score
0

Homework Statement


Use a Gaussian surface and an Amperian loop to derive the electrostatic boundary conditions for the polarisation field P at an interface between electric media 1 and 2 of relative permittivities e1 and e2. (Hint: determine results for D and E first)


Homework Equations





The Attempt at a Solution


The boundary conditions for E and D I know. I know that the restrictions on P will have something to do with the bound charge at the interface, and I know that P = D - \epsilon_{o}E. I am not sure what Gaussian surface or Amperian loop I should use, and how I should use it.
 
Physics news on Phys.org
\int D \cdot ds=4\pi \rho
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top