Chestermiller said:
No. If the reaction is heading in the forward direction, G is decreasing. If the reaction is heading in the reverse direction, G is decreasing also. At equilibrium, no matter which direction it is approached from, G is at a minimum. Pick any combination of concentrations for the reactants and products, and calculate the Gibbs free energy (for fixed temperature and pressure). The value you get will always be greater than if the set of concentrations were equilibrium values.
Now I understand a bit more. I can see why abs(ΔG)=w
E,rev=w
E,max where w is the non-expansion work (that will be done by the system as ΔG comes to 0, as G falls to minimum) and abs(ΔG) is the magnitude of ΔG. I can't see a situation which would require work to be done on the system, except to do work to bring abs(ΔG) to a
larger value than it is (whereas if it is falling in value as the system goes to equilibrium, with either forward or reverse direction of the reaction, you then get work out of the system).
A couple of linked questions? 1: I saw ΔG defined as the derivative of G with respect to extent or progress of reaction. I'm guessing ΔH and ΔS also have the same meaning (derivative of H and S respectively with respect to extent). Do ΔH and ΔS reach 0, like ΔG, at equilibrium, or do they reach some other arbitrary value that cancels out so that ΔG=ΔH-TΔS=0 at equilibrium? Given an isothermal system, it's impossible for them to be constant... but then what does the first law of thermodynamics mean, as ΔU (a derivative that changes value as reaction occurs) is related to q and w (two values that represent changes over the whole reaction) - is it that, like w
E with ΔG, the values q and w refer to heat gain or work done on the system between this stage in extent (this value of ΔU=∂U/∂ε) and when equilibrium is reached?
2: What is ΔG°? I've got the idea that it is some "limiting form" of ΔG, which applies to equilibrium rather than at any point - possibly ΔG° is ΔG when the extent of the reaction is 0. Does ΔG° have any relationship to maximum non-expansion work - I saw them equated? Similarly I see ΔH°=q at constant pressure (or ΔU°=q at constant volume) all the time; I never thought about it before but is this the limiting case of completion, where ΔH=q represents heat change as you get nearer to equilibrium, whereas ΔH°=q represents heat change for one mole of reaction going to completion?
Chestermiller said:
No. The free energy of a mixture is the sum of the number of moles of each species times the chemical potential of that species. If there are no products present, their number of moles in the mixture is zero, and they make no contribution to the free energy of the mixture. Sure, the chemical potential has a term in it which is proportional to the natural log of the mole fraction, but the zero number of moles trumps the natural log term in the limit.
Then how is the ΔG (not just G) for the whole system defined with respect to the different reactions occurring, i.e. in terms of ΔG as well-defined for each reaction in the mixture, if in a mixture? Or is ΔG only defined for a reaction (as derivative wrt extent of that reaction) whereas G is defined with respect to the whole mixture - so then, would we sum over all ΔG from each reaction, to find maximum non-expansion work that can be obtained from the mixture under its current composition?