- 1,753
- 143
Homework Statement
Evaluate the integral \int {\int\limits_R {\left( {x + y} \right)\,dA} } where R is the region that lies to the left of the y-axis between the circles x^2 + y^2 = 1 and x^2 + y^2 = 4 by changing to polar coordinates.
Homework Equations
x=r cos theta
y=r sin theta
The Attempt at a Solution
my effort:
\begin{array}{l}<br /> r_{inner} = \sqrt 1 = 1,\,\,r_{outer} = \sqrt 4 = 2 \\ <br /> R = \left\{ {\left( {r,\theta |1 \le r \le 4,\,\frac{{3\pi }}{2}\,\theta \le \pi } \right)} \right\} \\ <br /> x = r\cos \left( \theta \right),\,\,\,y = r\sin \left( \theta \right) \\ <br /> \int\limits_1^2 {\int\limits_{\pi /2}^{3\pi /2} {\left( {r\cos \left( \theta \right) + r\sin \left( \theta \right)} \right)\,d\theta \,dr} } \\ <br /> \end{array}
The solution shows an extra instance of r in the integral. If the original question is for (x+y) then why isn't it simply r cos + r sin, rather than r(r cos + r sin)?