I How to find the inverse of an integral transform?

hyurnat4
Messages
22
Reaction score
0
I'm trying to find the distribution of a random variable ##T## supported on ##[t_1, t_2]## subject to ## \mathbb{E}[V(t', T)] = K, \forall t' \in [t_1, t_2]##. In integral form, this is : $$ \int_{t_1}^{t_2} V(t', t).f(t) \, dt = K,\forall t' \in [t_1, t_2], $$ which is just an exotic integral transform.

So if I can find the inverse transform, I'm done. But the function ##V## is ...not nice. It's nowhere differentiable for ##t < t'##, there's a jump at ##t = t'## and it's constant from then on.

So do you guys know of any methods to find the inverse to an integral transform with a nasty kernel like ##V##? Or can you see another way to solve these equations? I'd even be happy with numerical techniques.

Thanks in advance.
 
Physics news on Phys.org
##V(t^\prime,t)## is similar to Brownian motion for ##t<t^\prime##?
 
Thread 'Direction Fields and Isoclines'
I sketched the isoclines for $$ m=-1,0,1,2 $$. Since both $$ \frac{dy}{dx} $$ and $$ D_{y} \frac{dy}{dx} $$ are continuous on the square region R defined by $$ -4\leq x \leq 4, -4 \leq y \leq 4 $$ the existence and uniqueness theorem guarantees that if we pick a point in the interior that lies on an isocline there will be a unique differentiable function (solution) passing through that point. I understand that a solution exists but I unsure how to actually sketch it. For example, consider a...
Back
Top