How to integrate 1/(x^2 +1)^2, does partial fractions work?

timjones007
Messages
9
Reaction score
0
how do you integrate 1/(x2 + 1)2 ?


i have tried integration by partial fractions but when you set 1 equal to (Ax +B)(x2+1) + (Cx + D) this leads to A=B=C=0 and D=1 which just gives you the original equation
 
Physics news on Phys.org


Try subbing x=tan(u), dx=1/cos^2(u)
 


Partial fraction in terms of the complex linear fractions 1/(x±i) and 1/(x±i)^2 will also work. You can then take together terms with their complex conjugate and then rewrite everything in a manifestly real form (you need to use the relation between the logarithm and arctan etc.).
 


ah thank you that works
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top